
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10989659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere, 2016, 162, 293-307.	4.2	161
2	Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. Plant and Soil, 2014, 374, 593-610.	1.8	101
3	Nitrogen Nutrition of Fruit Trees to Reconcile Productivity and Environmental Concerns. Plants, 2018, 7, 4.	1.6	100
4	THE ROLE OF MINERAL NUTRITION ON YIELDS AND FRUIT QUALITY IN GRAPEVINE, PEAR AND APPLE. Revista Brasileira De Fruticultura, 2015, 37, 1089-1104.	0.2	94
5	Mobility of copper and zinc fractions in fungicide-amended vineyard sandy soils. Archives of Agronomy and Soil Science, 2014, 60, 609-624.	1.3	84
6	Reduction of copper phytotoxicity by liming: A study of the root anatomy of young vines (Vitis) Tj ETQq0 0 0 rgE	BT /Overloo	ck <u>10</u> Tf 50 5

7	Tolerance and translocation of heavy metals in young grapevine (Vitis vinifera) grown in sandy acidic soil with interaction of high doses of copper and zinc. Scientia Horticulturae, 2017, 222, 203-212.	1.7	68
8	Nutrient transfer by runoff under no tillage in a soil treated with successive applications of pig slurry. Agriculture, Ecosystems and Environment, 2010, 139, 689-699.	2.5	67
9	Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere, 2019, 216, 147-156.	4.2	64
10	Nutrient release during the decomposition of mowed perennial ryegrass and white clover and its contribution to nitrogen nutrition of grapevine. Nutrient Cycling in Agroecosystems, 2011, 90, 299-308.	1.1	63
11	Acúmulo e formas de cobre e zinco no solo após aplicações sucessivas de dejeto lÃquido de suÃnos. Revista Brasileira De Ciencia Do Solo, 2010, 34, 955-965.	0.5	56
12	High copper content in vineyard soils promotes modifications in photosynthetic parameters and morphological changes in the root system of â€~Red Niagara' plantlets. Plant Physiology and Biochemistry, 2018, 128, 89-98.	2.8	56
13	Accumulation of phosphorus fractions in typic Hapludalf soil after long-term application of pig slurry and deep pig litter in a no-tillage system. Nutrient Cycling in Agroecosystems, 2012, 93, 215-225.	1.1	52
14	The potential of Zea mays L. in remediating copper and zinc contaminated soils for grapevine production. Geoderma, 2016, 262, 52-61.	2.3	52
15	Residual effect of surface-applied lime on soil acidity properties in a long-term experiment under no-till in a Southern Brazilian sandy Ultisol. Geoderma, 2018, 313, 7-16.	2.3	51
16	Formas e dessorção de cobre em solos cultivados com videira na Serra Gaúcha do Rio Grande do Sul. Revista Brasileira De Ciencia Do Solo, 2008, 32, 1479-1487.	0.5	47
17	Formas de fósforo no solo após sucessivas adições de dejeto lÃquido de suÃnos em pastagem natural. Revista Brasileira De Ciencia Do Solo, 2008, 32, 1753-1761.	0.5	47
18	Soil chemical properties related to acidity under successive pig slurry application. Revista Brasileira	0.5	45

De Ciencia Do Solo, 2011, 35, 1827-1836.

0.545

#	Article	IF	CITATIONS
19	Triggered antioxidant defense mechanism in maize grown in soil with accumulation of Cu and Zn due to intensive application of pig slurry. Ecotoxicology and Environmental Safety, 2013, 93, 145-155.	2.9	43
20	Nutrients in soil layers under no-tillage after successive pig slurry applications. Revista Brasileira De Ciencia Do Solo, 2013, 37, 157-167.	0.5	42
21	Rhizophagus clarus and phosphate alter the physiological responses of Crotalaria juncea cultivated in soil with a high Cu level. Applied Soil Ecology, 2015, 91, 37-47.	2.1	42
22	Soil solution concentrations and chemical species of copper and zinc in a soil with a history of pig slurry application and plant cultivation. Agriculture, Ecosystems and Environment, 2016, 216, 374-386.	2.5	42
23	Frações de fósforo no solo após sucessivas aplicações de dejetos de suÃnos em plantio direto. Pesquisa Agropecuaria Brasileira, 2010, 45, 593-602.	0.9	41
24	Interaction between arbuscular mycorrhizal fungi and vermicompost on copper phytoremediation in a sandy soil. Applied Soil Ecology, 2015, 96, 172-182.	2.1	40
25	Carbon, nitrogen and natural abundance of 13C and 15N in biogenic and physicogenic aggregates in a soil with 10 years of pig manure application. Soil and Tillage Research, 2017, 166, 52-58.	2.6	40
26	Soil-applied phosphorous is an effective tool to mitigate the toxicity of copper excess on grapevine grown in rhizobox. Scientia Horticulturae, 2018, 227, 102-111.	1.7	39
27	Iron fertilization to enhance tolerance mechanisms to copper toxicity of ryegrass plants used as cover crop in vineyards. Chemosphere, 2020, 243, 125298.	4.2	39
28	Long-term effect of surface and incorporated liming in the conversion of natural grassland to no-till system for grain production in a highly acidic sandy-loam Ultisol from South Brazilian Campos. Soil and Tillage Research, 2018, 180, 222-231.	2.6	38
29	Eficiência da calagem superficial e incorporada precedendo o sistema plantio direto em um argissolo sob pastagem natural. Revista Brasileira De Ciencia Do Solo, 2005, 29, 573-580.	0.5	37
30	Physiological and nutritional status of black oat (Avena strigosa Schreb.) grown in soil with interaction of high doses of copper and zinc. Plant Physiology and Biochemistry, 2016, 106, 253-263.	2.8	37
31	CARBONO ORGÃ,NICO TOTAL E AGREGAÇÃO DO SOLO EM SISTEMA DE PLANTIO DIRETO AGROECOLÓGICO CONVENCIONAL DE CEBOLA. Revista Brasileira De Ciencia Do Solo, 2015, 39, 1212-1224.	Е 0.5	36
32	Aplicação de nitrogênio em videiras na Campanha Gaúcha: produtividade e caracterÃsticas quÃmicas do mosto da uva. Ciencia Rural, 2007, 37, 389-393.	0.3	35
33	Forms and accumulation of copper and zinc in a sandy typic hapludalf soil after long-term application of pig slurry and deep litter. Revista Brasileira De Ciencia Do Solo, 2013, 37, 812-824.	0.5	35
34	Use of the SPAD-502 in Estimating Nitrogen Content in Leaves and Grape Yield in Grapevines in Soils with Different Texture. American Journal of Plant Sciences, 2012, 03, 1546-1561.	0.3	32
35	Phosphorus accumulation and pollution potential in a hapludult fertilized with pig manure. Revista Brasileira De Ciencia Do Solo, 2012, 36, 1333-1342.	0.5	32
36	Effects of zinc addition to a copper-contaminated vineyard soil on sorption of Zn by soil and plant physiological responses. Ecotoxicology and Environmental Safety, 2016, 129, 109-119.	2.9	32

#	Article	IF	CITATIONS
37	Biochemical changes in black oat (avena strigosa schreb) cultivated in vineyard soils contaminated with copper. Plant Physiology and Biochemistry, 2016, 103, 199-207.	2.8	32
38	Nitrogen fertilization affects yield and fruit quality in pear. Scientia Horticulturae, 2019, 258, 108782.	1.7	32
39	Depleção de formas de potássio do solo afetada por cultivos sucessivos. Revista Brasileira De Ciencia Do Solo, 2007, 31, 1003-1010.	0.5	32
40	HEAVY METALS IN VINEYARDS AND ORCHARD SOILS. Revista Brasileira De Fruticultura, 2017, 39, .	0.2	31
41	The interaction of high copper and zinc doses in acid soil changes the physiological state and development of the root system in young grapevines (Vitis vinifera). Ecotoxicology and Environmental Safety, 2018, 148, 985-994.	2.9	31
42	Use of phosphorus fertilization and mycorrhization as strategies for reducing copper toxicity in young grapevines. Scientia Horticulturae, 2019, 248, 176-183.	1.7	30
43	Pig slurry and nutrient accumulation and dry matter and grain yield in various crops. Revista Brasileira De Ciencia Do Solo, 2014, 38, 949-958.	0.5	29
44	Available content, surface runoff and leaching of phosphorus forms in a typic hapludalf treated with organic and mineral nutrient sources. Revista Brasileira De Ciencia Do Solo, 2014, 38, 544-556.	0.5	29
45	Liming as an ameliorator of copper toxicity in black oat (<i>Avena strigosa</i> Schreb.). Journal of Plant Nutrition, 2017, 40, 404-416.	0.9	29
46	Fósforo microbiano do solo sob sistema plantio direto em resposta à adição de fosfato solúvel. Revista Brasileira De Ciencia Do Solo, 2007, 31, 563-570.	0.5	28
47	Nutrient transfers by leaching in a no-tillage system through soil treated with repeated pig slurry applications. Nutrient Cycling in Agroecosystems, 2013, 95, 115-131.	1.1	28
48	Contribution of nitrogen from agricultural residues of rye to †Niagara Rosada' grape nutrition. Scientia Horticulturae, 2014, 169, 66-70.	1.7	28
49	Black Oat (Avena strigosa Schreb.) Growth and Root Anatomical Changes in Sandy Soil with Different Copper and Phosphorus Concentrations. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	28
50	Fósforo da biomassa microbiana e atividade de fosfatases ácidas durante a diminuição do fósforo disponÃvel no solo. Pesquisa Agropecuaria Brasileira, 2008, 43, 1085-1091.	0.9	27
51	Copper availability assessment of Cu-contaminated vineyard soils using black oat cultivation and chemical extractants. Environmental Monitoring and Assessment, 2014, 186, 9051-9063.	1.3	27
52	Accumulation of copper and zinc fractions in vineyard soil in the mid-western region of Santa Catarina, Brazil. Environmental Earth Sciences, 2015, 73, 6379-6386.	1.3	27
53	Produção e composição quÃmica da uva de videiras Cabernet Sauvignon submetidas à adubação nitrogenada. Ciencia Rural, 2009, 39, 2035-2041.	0.3	26
54	Physical properties and organic carbon content of a Typic Hapludult soil fertilised with pig slurry and pig litter in a no-tillage system. Soil Research, 2013, 51, 459.	0.6	25

#	Article	IF	CITATIONS
55	Contribution of nitrogen from urea applied at different rates and times on grapevine nutrition. Scientia Horticulturae, 2016, 207, 1-6.	1.7	25
56	A Smart and Sustainable Future for Viticulture Is Rooted in Soil: How to Face Cu Toxicity. Applied Sciences (Switzerland), 2021, 11, 907.	1.3	25
57	NÃvel crÃtico e resposta das culturas ao potÃjssio em um Argissolo sob sistema plantio direto. Revista Brasileira De Ciencia Do Solo, 2005, 29, 565-571.	0.5	24
58	Potential of vermicompost and limestone in reducing copper toxicity in young grapevines grown in Cu-contaminated vineyard soil. Chemosphere, 2019, 226, 421-430.	4.2	24
59	Changes in soil acidity and organic carbon in a sandy typic hapludalf after medium-term pig-slurry and deep-litter application. Revista Brasileira De Ciencia Do Solo, 2012, 36, 1620-1628.	0.5	24
60	Growth and chemical changes in the rhizosphere of black oat (Avena strigosa) grown in soils contaminated with copper. Ecotoxicology and Environmental Safety, 2018, 163, 19-27.	2.9	23
61	Short- and long-term effects of animal manures and mineral fertilizer on carbon stocks in subtropical soil under no-tillage. Geoderma, 2021, 386, 114913.	2.3	22
62	Environmental Vulnerability and Phosphorus Fractions of Areas with Pig Slurry Applied to the Soil. Journal of Environmental Quality, 2015, 44, 162-173.	1.0	21
63	Accumulation and distribution of copper and zinc in soils following the application of pig slurry for three to thirty years in a microwatershed of southern Brazil. Archives of Agronomy and Soil Science, 2016, 62, 593-616.	1.3	21
64	Throwing Copper Around: How Plants Control Uptake, Distribution, and Accumulation of Copper. Agronomy, 2022, 12, 994.	1.3	20
65	Mineralogical changes caused by grape production in a regosol from subtropical Brazilian climate. Journal of Soils and Sediments, 2012, 12, 854-862.	1.5	19
66	Matéria seca de plantas de cobertura, produção de cebola e atributos quÃmicos do solo em sistema plantio direto agroecológico. Ciencia Rural, 2013, 43, 21-27.	0.3	19
67	THE PEAR TREE RESPONSE TO PHOSPHORUS AND POTASSIUM FERTILIZATION. Revista Brasileira De Fruticultura, 2015, 37, 507-516.	0.2	19
68	Soil amendment as a strategy for the growth of young vines when replanting vineyards in soils with high copper content. Plant Physiology and Biochemistry, 2018, 126, 152-162.	2.8	19
69	Carbon and nitrogen contents and aggregation index of soil cultivated with onion for seven years using crop successions and rotations. Soil and Tillage Research, 2018, 184, 195-202.	2.6	19
70	Plant species and pH dependent responses to copper toxicity. Environmental and Experimental Botany, 2022, 196, 104791.	2.0	19
71	Phosphorus fractions in soil with a long history of organic waste and mineral fertilizer addition. Bragantia, 2017, 76, 155-166.	1.3	18
72	Copper Accumulation and Availability in Sandy, Acid, Vineyard Soils. Communications in Soil Science and Plant Analysis, 2017, 48, 1167-1183.	0.6	17

#	Article	IF	CITATIONS
73	Copper and zinc accumulation, fractionation and migration in vineyard soils from Santa Catarina State, Brazil. Bragantia, 2018, 77, 141-151.	1.3	16
74	Estado nutricional, vigor e produção em videiras cultivadas com plantas de cobertura. Revista Brasileira De Fruticultura, 2013, 35, 1190-1200.	0.2	16
75	Potassium availability in a hapludalf soil under long term fertilization. Revista Brasileira De Ciencia Do Solo, 2010, 34, 783-791.	0.5	15
76	Formas de fósforo no solo sob pastagens naturais submetidas à adição de fosfatos. Revista Brasileira De Ciencia Do Solo, 2014, 38, 867-878.	0.5	15
77	Effects of Pig Slurry Application and Crops on Phosphorus Content in Soil and the Chemical Species in Solution. Revista Brasileira De Ciencia Do Solo, 2015, 39, 774-787.	0.5	15
78	Effects of Rhizophagus clarus and P availability in the tolerance and physiological response of Mucuna cinereum to copper. Plant Physiology and Biochemistry, 2018, 122, 46-56.	2.8	15
79	Copper and zinc distribution and toxicity in †Jade' / †Genovesa' young peach tree. Scientia Horticulturae, 2020, 259, 108763.	1.7	15
80	ANIMAL MANURE AS FERTILIZER: CHANGES IN SOIL ATTRIBUTES, PRODUCTIVITY AND FOOD COMPOSITION. International Journal of Research -GRANTHAALAYAH, 2019, 7, 307-331.	0.1	15
81	Long-Term Effects of Animal Manures on Nutrient Recovery and Soil Quality in Acid Typic Hapludalf under No-Till Conditions. Agronomy, 2022, 12, 243.	1.3	15
82	Forms of phosphorus transfer in runoff under no-tillage in a soil treated with successive swine effluents applications. Environmental Monitoring and Assessment, 2015, 187, 209.	1.3	14
83	Nitrogen Availability and Physiological Response of Corn After 12ÂYears with Organic and Mineral Fertilization. Journal of Soil Science and Plant Nutrition, 2020, 20, 979-989.	1.7	14
84	Forms of nitrogen and phosphorus transfer by runoff in soil under no-tillage with successive organic waste and mineral fertilizers applications. Agricultural Water Management, 2021, 248, 106779.	2.4	14
85	Phosphorus forms leached in a sandy Typic Hapludalf soil under no-tillage with successive pig slurry applications. Agricultural Water Management, 2020, 242, 106406.	2.4	13
86	Plant uptake of legacy phosphorus from soils without P fertilization. Nutrient Cycling in Agroecosystems, 2021, 119, 139-151.	1.1	13
87	Alterações nos atributos quÃmicos de solo arenoso pela calagem superficial no sistema plantio direto consolidado. Ciencia Rural, 2003, 33, 283-290.	0.3	12
88	Phosphorus fractions in sandy soils of vineyards in southern Brazil. Revista Brasileira De Ciencia Do Solo, 2013, 37, 472-481.	0.5	12
89	Organic carbon and nitrogen contents and their fractions in soils with onion crops in different management systems. Soil Research, 2018, 56, 846.	0.6	12
90	Should Heavy Metals Be Monitored in Foods Derived From Soils Fertilized With Animal Waste?. Frontiers in Plant Science, 2018, 9, 732.	1.7	12

GUSTAVO BRUNETTO

#	Article	IF	CITATIONS
91	Microbiological and chemical attributes of a Hapludalf soil with swine manure fertilization. Pesquisa Agropecuaria Brasileira, 2013, 48, 774-782.	0.9	11
92	Root system structure as a criterion for the selection of grapevine genotypes that are tolerant to excess copper and the ability of phosphorus to mitigate toxicity. Plant Physiology and Biochemistry, 2022, 171, 147-156.	2.8	11
93	Resposta das videiras a diferentes modos de distribuição de composto orgânico no solo. Revista Brasileira De Fruticultura, 2012, 34, 493-503.	0.2	10
94	Soil Phosphorus Fractions in a Sandy Typic Hapludaft as Affected by Phosphorus Fertilization and Grapevine Cultivation Period. Communications in Soil Science and Plant Analysis, 2013, 44, 1937-1950.	0.6	10
95	Impact of Cu concentrations in nutrient solution on growth and physiological and biochemical parameters of beet and cabbage and human health risk assessment. Scientia Horticulturae, 2020, 272, 109558.	1.7	10
96	Lime Protection for Young Vines Exposed to Copper Toxicity. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	10
97	Spatial variation of herbaceous cover species community in Cu-contaminated vineyards in Pampa biome. Environmental Science and Pollution Research, 2020, 27, 13348-13359.	2.7	10
98	Frações de cobre e zinco em solos de vinhedos no Meio Oeste de Santa Catarina. Revista Brasileira De Engenharia Agricola E Ambiental, 2014, 18, 805-810.	0.4	10
99	Phosphorus fractions in the vineyard soil of the Serra Gaúcha of Rio Grande do Sul, Brazil. Revista Brasileira De Engenharia Agricola E Ambiental, 2014, 18, 133-140.	0.4	10
100	Physiological Changes in Maize Grown in Soil with Copper and Zinc Accumulation Resulting from the Addition of Pig Slurry and Deep Litter over 10ÂYears. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	9
101	Structural changes in roots of peach rootstock cultivars grown in soil with high zinc content. Scientia Horticulturae, 2018, 237, 1-10.	1.7	9
102	Crop response to organic fertilization with supplementary mineral nitrogen. Revista Brasileira De Ciencia Do Solo, 2014, 38, 912-922.	0.5	8
103	Rhizophagus Clarus and Phosphorus in Crotalaria juncea: Growth, Glomalin Content and Acid Phosphatase Activity in a Copper-Contaminated Soil. Revista Brasileira De Ciencia Do Solo, 2018, 42, .	0.5	8
104	Copper and Zn distribution in humic substances of soil after 10 years of pig manure application in south of Santa Catarina, Brazil. Environmental Geochemistry and Health, 2020, 42, 3281-3301.	1.8	8
105	Annual and residual urea nitrogen contribution to the nutrition of peach trees (Prunus persica L.) grown under subtropical climate. Scientia Horticulturae, 2021, 284, 110099.	1.7	8
106	Accumulation of phosphorus fractions and contamination potential in vineyard soils in the southern region of the state of Santa Catarina, Brazil. Revista Brasileira De Ciencia Do Solo, 2013, 37, 1256-1266.	0.5	7
107	â€~FUJI' APPLE TREE RESPONSE TO PHOSPHORUS FERTILIZATION. Revista Brasileira De Fruticultura, 2017, 39,	, .0.2	7
108	Phosphorus fractions in apple orchards in southern Brazil. Bragantia, 2017, 76, 422-432.	1.3	7

#	Article	IF	CITATIONS
109	Chemical, Biological, and Biochemical Parameters of the Soil P Cycle After Long-Term Pig Slurry Application in No-Tillage System. Revista Brasileira De Ciencia Do Solo, 2017, 41, .	0.5	7
110	Liming as a means of reducing copper toxicity in black oats. Ciencia Rural, 2018, 48, .	0.3	7
111	Residual and immediate effect after 16 applications of organic sources on yield and nitrogen use efficiency in black oat and corn. Revista Brasileira De Ciencia Do Solo, 2020, 44, .	0.5	7
112	Release of Phosphorus Forms from Cover Crop Residues in Agroecological No-Till Onion Production. Revista Brasileira De Ciencia Do Solo, 2017, 41, .	0.5	6
113	Nitrogen fertilization in the growth phase of 'Chardonnay' and 'Pinot Noir' vines and nitrogen forms in sandy soil of the Pampa Biome. Revista Ceres, 2017, 64, 433-440.	0.1	6
114	Copper and Zinc in Rhizosphere Soil and Toxicity Potential in White Oats (Avena sativa) Grown in Soil with Long-Term Pig Manure Application. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	6
115	Aggregation index, carbon, nitrogen, and natural abundance of 13C and 15N in soil aggregates and bulk soil cultivated with onion under crop successions and rotations. Soil Research, 2020, 58, 622.	0.6	6
116	Soil chemical properties and yield of onion crops grown for eight years under no-tillage system with cover crops. Soil and Tillage Research, 2021, 208, 104897.	2.6	6
117	Contribution of Cover Crop Residue Decomposition to Peach Tree Nitrogen Nutrition. Journal of Soil Science and Plant Nutrition, 2021, 21, 2124-2136.	1.7	6
118	Copper and Zinc fractions and adsorption in sandy soil with long-term pig manure application. Archives of Agronomy and Soil Science, 2022, 68, 1930-1946.	1.3	6
119	Identification and phytoremediation potential of spontaneous species in vineyard soils contaminated with copper. International Journal of Phytoremediation, 2022, 24, 342-349.	1.7	6
120	Phosphorus accumulation in a southern Brazilian Ultisol amended with pig manure for nine years. Scientia Agricola, 2021, 78, .	0.6	6
121	Chemical Properties in Macroaggregates of a Humic Dystrudept Cultivated with Onion under No-Till and Conventional Tillage Systems. Revista Brasileira De Ciencia Do Solo, 2017, 41, .	0.5	5
122	Copper and zinc fractions in the profile of an Inceptisol cultivated with apple in southern Brazil. Bragantia, 2018, 77, 333-347.	1.3	5
123	Samples disturbance overestimates phosphorus adsorption capacity in soils under long-term application of pig slurry. Archives of Agronomy and Soil Science, 2019, 65, 1262-1272.	1.3	5
124	Aggregation Index and Carbon and Nitrogen Contents in Aggregates of Pasture Soils under Successive Applications of Pig Slurry in Southern Brazil. Agronomy, 2022, 12, 320.	1.3	5
125	Physiological responses of beet and cabbage plants exposed to copper and their potential insertion in human food chain. Environmental Science and Pollution Research, 2022, 29, 44186-44198.	2.7	5
126	Correction of soil acidity in the subsurface of an oxisol with sandy loam texture under no-tillage. Revista Brasileira De Ciencia Do Solo, 2009, 33, 659-667.	0.5	4

#	Article	IF	CITATIONS
127	Application of nitrogen sources on grapevines and effect on yield and must composition. Revista Brasileira De Fruticultura, 2013, 35, 1042-1051.	0.2	4
128	Nitrogen availability in an apple orchard with weed management. Ciencia Rural, 2018, 48, .	0.3	4
129	Tolerance and phytoremediation potential of grass species native to South American grasslands to copper-contaminated soils. International Journal of Phytoremediation, 2021, 23, 1-10.	1.7	4
130	Physiological responses of soybean (Glycine max (L.) Merrill) cultivars to copper excess. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20190121.	0.3	4
131	Potential phytoremediation of Pampa biome native and invasive grass species cohabiting vineyards contaminated with Cu in Southern Brazil. Environmental Science and Pollution Research, 2022, 29, 85376-85388.	2.7	4
132	Nitrogen Transfer from Cover Crop Residues to Onion Grown under Minimum Tillage in Southern Brazil. Revista Brasileira De Ciencia Do Solo, 2017, 41, .	0.5	3
133	Growth, biochemical response and nutritional status of Angico-Vermelho (<i>Parapiptadenia) Tj ETQq1 1 0.7843 International Journal of Phytoremediation, 2018, 20, 1380-1388.</i>	14 rgBT /(1.7	Overlock 10 T 3
134	Nitrous Oxide Emissions in No-Tillage Onion (Allium cepa L.) Crops Are Increased by Oilseed Radish Cover Crop and Poultry Manure Application. Revista Brasileira De Ciencia Do Solo, 0, 43, .	0.5	3
135	Diagnosis and management of nutrient constraints in grape. , 2020, , 693-710.		3
136	Increase in phosphorus concentration reduces the toxicity of copper in wheat roots (Triticum) Tj ETQq0 0 0 rgBT	Overlock	2 19 Tf 50 382
137	Use of Swine Manure in Agriculture in Southern Brazil: Fertility or Potential Contamination?. , 0, , .		3
138	Physiological, Biochemical Changes, and Phytotoxicity Remediation in Agricultural Plant Species Cultivated in Soils Contaminated with Copper and Zinc. , 2018, , 29-76.		2
139	Kinetic parameters related to nitrogen uptake efficiency of pear trees (Pyrus communis). Scientia Horticulturae, 2020, 272, 109530.	1.7	2
140	Kinetic parameters estimation for increasing the efficiency of nutrient absorption in fruit trees. Revista Brasileira De Fruticultura, 2021, 43, .	0.2	2
141	The tolerance of grapevine rootstocks to copper excess and to the use of calcium and phosphorus to mitigate its phytotoxicity. Environmental Science and Pollution Research, 2022, 29, 82844-82854.	2.7	2
142	The fate of pig slurry phosphorus applied to a sandy loam soil under no-till cropping in southern Brazil. Geoderma, 2022, 422, 115931.	2.3	1
143	Chemical speciation of copper and manganese in solution of a copper-contaminated soil and young grapevine growth with amendment application. Pedosphere, 2023, 33, 496-507.	2.1	1
144	Fruit yield and composition in orange trees cv. 'Lane Late' in response to nitrogen fertilization in Sandy Typic Hapludalf soil. Ciencia Rural, 2017, 47, .	0.3	0

#	Article	lF	CITATIONS
145	PHOSPHORUS AND HEAVY METAL CONTENTS IN SMALL-SCALE COMPOSTING AREAS. International Journal of Research -GRANTHAALAYAH, 2020, 8, 1-14.	0.1	0
146	Soil chemical properties in vineyard areas in the southern region of the state of Santa Catarina, Brazil. Pesquisa Agropecuaria Brasileira, 0, 56, .	0.9	0