
Debin Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10989159/publications.pdf Version: 2024-02-01

DEBIN KONC

#	Article	IF	CITATIONS
1	Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Scientific Reports, 2013, 3, 2975.	3.3	541
2	Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nature Communications, 2018, 9, 402.	12.8	227
3	Rational design of MoS ₂ @graphene nanocables: towards high performance electrode materials for lithium ion batteries. Energy and Environmental Science, 2014, 7, 3320-3325.	30.8	218
4	Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nature Communications, 2020, 11, 3826.	12.8	193
5	Encapsulating V ₂ O ₅ into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries. Energy and Environmental Science, 2016, 9, 906-911.	30.8	162
6	Dimensionally Designed Carbon–Silicon Hybrids for Lithium Storage. Advanced Functional Materials, 2019, 29, 1806061.	14.9	140
7	Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes. ACS Nano, 2017, 11, 7476-7484.	14.6	132
8	Disassembly–Reassembly Approach to RuO ₂ /Graphene Composites for Ultrahigh Volumetric Capacitance Supercapacitor. Small, 2017, 13, 1701026.	10.0	113
9	N,P co-doped hollow carbon nanofiber membranes with superior mass transfer property for trifunctional metal-free electrocatalysis. Nano Energy, 2019, 64, 103879.	16.0	110
10	All-biomaterial supercapacitor derived from bacterial cellulose. Nanoscale, 2016, 8, 9146-9150.	5.6	97
11	Monolithic carbons with spheroidal and hierarchical pores produced by the linkage of functionalized graphene sheets. Carbon, 2014, 69, 169-177.	10.3	88
12	Two-dimensional materials for lithium/sodium-ion capacitors. Materials Today Energy, 2019, 11, 30-45.	4.7	88
13	New insight to the role of edges and heteroatoms in nanocarbons for oxygen reduction reaction. Nano Energy, 2019, 66, 104096.	16.0	79
14	Twin-functional graphene oxide: compacting with Fe 2 O 3 into a high volumetric capacity anode for lithium ion battery. Energy Storage Materials, 2017, 6, 98-103.	18.0	74
15	Rational Design of Carbonâ€Rich Materials for Energy Storage and Conversion. Advanced Materials, 2019, 31, e1804973.	21.0	74
16	Realizing High Volumetric Lithium Storage by Compact and Mechanically Stable Anode Designs. ACS Energy Letters, 2020, 5, 1986-1995.	17.4	72
17	Tailoring Microstructure of Grapheneâ€Based Membrane by Controlled Removal of Trapped Water Inspired by the Phase Diagram. Advanced Functional Materials, 2014, 24, 3456-3463.	14.9	67
18	Maximizing pore and heteroatom utilization within N,P-co-doped polypyrrole-derived carbon nanotubes for high-performance supercapacitors. Journal of Materials Chemistry A, 2020, 8, 17558-17567.	10.3	64

Debin Kong

#	Article	IF	CITATIONS
19	1000 Wh Lâ~'1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes. National Science Review, 2021, 8, nwab012.	9.5	60
20	Enhanced Roles of Carbon Architectures in High-Performance Lithium-Ion Batteries. Nano-Micro Letters, 2019, 11, 5.	27.0	56
21	Flowable sulfur template induced fully interconnected pore structures in graphene artefacts towards high volumetric potassium storage. Nano Energy, 2020, 72, 104729.	16.0	47
22	A novel SnS ₂ @graphene nanocable network for high-performance lithium storage. RSC Advances, 2014, 4, 23372-23376.	3.6	44
23	Electrode thickness matching for achieving high-volumetric-performance lithium-ion capacitors. Energy Storage Materials, 2019, 18, 133-138.	18.0	43
24	Liquid Metal Remedies Silicon Microparticulates Toward Highly Stable and Superior Volumetric Lithium Storage. Advanced Energy Materials, 2022, 12, .	19.5	42
25	A facile Schiff base chemical approach: towards molecular-scale engineering of N-C interface for high performance lithium-sulfur batteries. Nano Energy, 2018, 46, 365-371.	16.0	32
26	Electrode Design from "Internal―to "External―for High Stability Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 14142-14149.	8.0	32
27	Practical Graphene Technologies for Electrochemical Energy Storage. Advanced Functional Materials, 2022, 32, .	14.9	32
28	Nitrogenâ€Enriched Carbon/CNT Composites Based on Schiffâ€Base Networks: Ultrahigh N Content and Enhanced Lithium Storage Properties. Small, 2018, 14, e1703569.	10.0	31
29	WS2 nanoplates embedded in graphitic carbon nanotubes with excellent electrochemical performance for lithium and sodium storage. Science China Materials, 2018, 61, 671-678.	6.3	29
30	Sp2-carbon dominant carbonaceous materials for energy conversion and storage. Materials Science and Engineering Reports, 2019, 137, 1-37.	31.8	25
31	lonothermal strategy towards template-free hierarchical porous carbons for supercapacitive energy storage. Carbon, 2019, 143, 487-493.	10.3	24
32	A thick yet dense silicon anode with enhanced interface stability in lithium storage evidenced by in situ TEM observations. Science Bulletin, 2020, 65, 1563-1569.	9.0	23
33	Carbonâ€Networkâ€Integrated SnSiO <i>_x</i> ₊₂ Nanofiber Sheathed by Ultrathin Graphitic Carbon for Highly Reversible Lithium Storage. Advanced Energy Materials, 2016, 6, 1502495.	19.5	18
34	Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Research, 2022, 15, 361-367.	10.4	18
35	Structure controllable carbon matrix derived from benzene-constructed porous organic polymers for high-performance Li-S batteries. Carbon, 2017, 116, 633-639.	10.3	16
36	Porous graphene oxide-based carbon artefact with high capacity for methylene blue adsorption. Adsorption, 2016, 22, 1043-1050.	3.0	15

Debin Kong

#	Article	IF	CITATIONS
37	A facile and processable integration strategy towards Schiff-base polymer-derived carbonaceous materials with high lithium storage performance. Nanoscale, 2018, 10, 10351-10356.	5.6	15
38	Continuous carbon nanofiber bundles with tunable pore structures and functions for weavable fibrous supercapacitors. Energy Storage Materials, 2016, 5, 43-49.	18.0	14
39	Embedding Reduced Graphene Oxide in Bacterial Celluloseâ€Derived Carbon Nanofibril Networks for Supercapacitors. ChemElectroChem, 2017, 4, 2448-2452.	3.4	14
40	Chemical tailoring of one-dimensional polypyrene nanocapsules at a molecular level: towards ideal sulfur hosts for high-performance Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 2009-2014.	10.3	10
41	"Nano-spring―confined in a shrinkable graphene cage towards self-adaptable high-capacity anodes. Energy Storage Materials, 2022, 50, 554-562.	18.0	10
42	A template oriented one-dimensional Schiff-base polymer: towards flexible nitrogen-enriched carbonaceous electrodes with ultrahigh electrochemical capacity. Nanoscale, 2021, 13, 19210-19217.	5.6	6
43	Electrifying Schiff-based networks as model catalysts towards deeply understanding the crucial role of sp2-carbon in nitrogen-doped carbocatalyst for oxygen reduction reaction. Applied Surface Science, 2022, 599, 153961.	6.1	2
44	Energy Storage: Disassembly–Reassembly Approach to RuO ₂ /Graphene Composites for Ultrahigh Volumetric Capacitance Supercapacitor (Small 30/2017). Small, 2017, 13, .	10.0	0