Haiyang Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10988935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research Progress on Pulmonary Arterial Hypertension and the Role of the Angiotensin Converting Enzyme 2-Angiotensin-(1–7)-Mas Axis in Pulmonary Arterial Hypertension. Cardiovascular Drugs and Therapy, 2022, 36, 363-370.	2.6	9
2	Established pulmonary hypertension in rats was reversed by a combination of a HIFâ€2α antagonist and a p53 agonist. British Journal of Pharmacology, 2022, 179, 1065-1081.	5.4	13
3	Gut Microbial Metabolite Trimethylamine <i>N</i> -Oxide Aggravates Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 452-460.	2.9	26
4	Mitochondrial Metabolism, Redox, and Calcium Homeostasis in Pulmonary Arterial Hypertension. Biomedicines, 2022, 10, 341.	3.2	13
5	Editorial: Pathophysiology and Pathogenic Mechanisms of Pulmonary Vascular Disease. Frontiers in Physiology, 2022, 13, 854265.	2.8	0
6	Sodium tanshinone IIA sulfonate enhances the BMP9-BMPR2-Smad1/5/9 signaling pathway in rat pulmonary microvascular endothelial cells and human embryonic stem cell–derived endothelial cells. Biochemical Pharmacology, 2022, 199, 114986.	4.4	5
7	Artemisinin and Its Derivate Alleviate Pulmonary Hypertension and Vasoconstriction in Rodent Models. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-21.	4.0	4
8	A TOR2A Gene Product: Salusin-Î ² Contributes to Attenuated Vasodilatation of Spontaneously Hypertensive Rats. Cardiovascular Drugs and Therapy, 2021, 35, 125-139.	2.6	15
9	RAC1 nitration at Y32 IS involved in the endothelial barrier disruption associated with lipopolysaccharide-mediated acute lung injury. Redox Biology, 2021, 38, 101794.	9.0	19
10	IL-18 mediates sickle cell cardiomyopathy and ventricular arrhythmias. Blood, 2021, 137, 1208-1218.	1.4	22
11	Activation of the mechanosensitive Ca2+ channel TRPV4 induces endothelial barrier permeability via the disruption of mitochondrial bioenergetics. Redox Biology, 2021, 38, 101785.	9.0	24
12	Mitomycin C induces pulmonary vascular endothelialâ€toâ€mesenchymal transition and pulmonary venoâ€occlusive disease via Smad3â€dependent pathway in rats. British Journal of Pharmacology, 2021, 178, 217-235.	5.4	11
13	Cytokines, Chemokines, and Inflammation in Pulmonary Arterial Hypertension. Advances in Experimental Medicine and Biology, 2021, 1303, 275-303.	1.6	18
14	Design and Comprehensive Characterization of Tetramethylpyrazine (TMP) for Targeted Lung Delivery as Inhalation Aerosols in Pulmonary Hypertension (PH): In Vitro Human Lung Cell Culture and In Vivo Efficacy. Antioxidants, 2021, 10, 427.	5.1	7
15	The mitochondrial redistribution of eNOS is involved in lipopolysaccharide induced inflammasome activation during acute lung injury. Redox Biology, 2021, 41, 101878.	9.0	21
16	Upregulation of Piezo1 (Piezo Type Mechanosensitive Ion Channel Component 1) Enhances the Intracellular Free Calcium in Pulmonary Arterial Smooth Muscle Cells From Idiopathic Pulmonary Arterial Hypertension Patients. Hypertension, 2021, 77, 1974-1989.	2.7	42
17	Nitration of protein kinase G-Iα modulates cyclic nucleotide crosstalk via phosphodiesterase 3A: Implications for acute lung injury. Journal of Biological Chemistry, 2021, 297, 100946.	3.4	3
18	Hypoxia-Inducible Factor 2-Alpha Mediated Gene Sets Differentiate Pulmonary Arterial Hypertension. Frontiers in Cell and Developmental Biology, 2021, 9, 701247.	3.7	5

#	Article	IF	CITATIONS
19	Sex Differences, Estrogen Metabolism and Signaling in the Development of Pulmonary Arterial Hypertension. Frontiers in Cardiovascular Medicine, 2021, 8, 719058.	2.4	15
20	Melatonin Promotes the Therapeutic Effect of Mesenchymal Stem Cells on Type 2 Diabetes Mellitus by Regulating TGF-β Pathway. Frontiers in Cell and Developmental Biology, 2021, 9, 722365.	3.7	7
21	Endothelial upregulation of mechanosensitive channel Piezo1 in pulmonary hypertension. American Journal of Physiology - Cell Physiology, 2021, 321, C1010-C1027.	4.6	29
22	Artemisinin Improves Acetylcholine-Induced Vasodilatation in Rats with Primary Hypertension. Drug Design, Development and Therapy, 2021, Volume 15, 4489-4502.	4.3	5
23	Combination Therapy With Rapamycin and Low Dose Imatinib in Pulmonary Hypertension. Frontiers in Pharmacology, 2021, 12, 758763.	3.5	5
24	Transplantation of Mesenchymal Stem Cells Attenuates Pulmonary Hypertension by Normalizing the Endothelial-to-Mesenchymal Transition. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 49-60.	2.9	14
25	Endothelial plateletâ€derived growth factorâ€mediated activation of smooth muscle plateletâ€derived growth factor receptors in pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10, 1-15.	1.7	13
26	Pulmonary vessel casting in a rat model of monocrotalineâ€mediated pulmonary hypertension. Pulmonary Circulation, 2020, 10, 1-7.	1.7	6
27	Transcriptomic profiles in pulmonary arterial hypertension associate with disease severity and identify novel candidate genes. Pulmonary Circulation, 2020, 10, 1-5.	1.7	11
28	Direct Extracellular NAMPT Involvement in Pulmonary Hypertension and Vascular Remodeling. Transcriptional Regulation by SOX and HIF-2α. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 92-103.	2.9	39
29	Tetramethylpyrazine: A promising drug for the treatment of pulmonary hypertension. British Journal of Pharmacology, 2020, 177, 2743-2764.	5.4	36
30	Genetic Admixture and Survival in Diverse Populations with Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1407-1415.	5.6	18
31	Salusin-β Promotes Vascular Calcification <i>via</i> Nicotinamide Adenine Dinucleotide Phosphate/Reactive Oxygen Species-Mediated Klotho Downregulation. Antioxidants and Redox Signaling, 2019, 31, 1352-1370.	5.4	27
32	ALDH2 (Aldehyde Dehydrogenase 2) Protects Against Hypoxia-Induced Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2303-2319.	2.4	51
33	Angiotensin-(1-7) induced vascular relaxation in spontaneously hypertensive rats. Nitric Oxide - Biology and Chemistry, 2019, 88, 1-9.	2.7	32
34	Echocardiographic assessment of right ventricular function in experimental pulmonary hypertension. Pulmonary Circulation, 2019, 9, 1-9.	1.7	36
35	Effects of Angiotensin-(1-7) and Angiotensin II on Acetylcholine-Induced Vascular Relaxation in Spontaneously Hypertensive Rats. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	4.0	17
36	Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respiratory Medicine,the, 2019, 7, 227-238.	10.7	122

#	Article	IF	CITATIONS
37	Endothelial HIF-2α Contributes to Severe Pulmonary Hypertension by Inducing Endothelial-to-Mesenchymal Transition. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, ajplung.00096.2.	2.9	121
38	Pathogenic Role of mTORC1 and mTORC2 in Pulmonary Hypertension. JACC Basic To Translational Science, 2018, 3, 744-762.	4.1	47
39	Establishment and evaluation of chronic obstructive pulmonary disease model by chronic exposure to motor vehicle exhaust combined with lipopolysaccharide instillation. Experimental Physiology, 2018, 103, 1532-1542.	2.0	7
40	Smooth muscle cell-specific FoxM1 controls hypoxia-induced pulmonary hypertension. Cellular Signalling, 2018, 51, 119-129.	3.6	27
41	Circulating transcriptome as a signature for the diagnosis of pulmonary arterial hypertension FASEB Journal, 2018, 32, 586.4.	0.5	0
42	Endothelialâ€dependent activation of smooth muscle PDGF Receptors enhances PASMC proliferation in IPAH. FASEB Journal, 2018, 32, lb444.	0.5	0
43	Nicotinamide Phosphoribosyltransferase Promotes Pulmonary Vascular Remodeling and Is a Therapeutic Target in Pulmonary Arterial Hypertension. Circulation, 2017, 135, 1532-1546.	1.6	57
44	Chloroquine is a potent pulmonary vasodilator that attenuates hypoxiaâ€induced pulmonary hypertension. British Journal of Pharmacology, 2017, 174, 4155-4172.	5.4	37
45	Angiotensin-(1-7) in Paraventricular Nucleus Contributes to the Enhanced Cardiac Sympathetic Afferent Reflex and Sympathetic Activity in Chronic Heart Failure Rats. Cellular Physiology and Biochemistry, 2017, 42, 2523-2539.	1.6	17
46	Pathogenic role of ion channels in pulmonary arterial hypertension. Experimental Physiology, 2017, 102, 1075-1077.	2.0	3
47	Orai1, 2, 3 and STIM1 promote store-operated calcium entry in pulmonary arterial smooth muscle cells. Cell Death Discovery, 2017, 3, 17074.	4.7	36
48	Comparison and evaluation of two different methods to establish the cigarette smoke exposure mouse model of COPD. Scientific Reports, 2017, 7, 15454.	3.3	38
49	ls p38 MAPK a Dark Force in Right Ventricular Hypertrophy and Failure in Pulmonary Arterial Hypertension?. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 506-508.	2.9	10
50	Expression profile of mitochondrial voltage-dependent anion channel-1 (VDAC1) influenced genes is associated with pulmonary hypertension. Korean Journal of Physiology and Pharmacology, 2017, 21, 353.	1.2	3
51	Calcium-Sensing Receptor Regulates Cytosolic [Ca2+] and Plays a Major Role in the Development of Pulmonary Hypertension. Frontiers in Physiology, 2016, 7, 517.	2.8	51
52	Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L846-L859.	2.9	69
53	Sodium tanshinone IIA sulfonate inhibits hypoxia-induced enhancement of SOCE in pulmonary arterial smooth muscle cells via the PKG-PPAR-Î ³ signaling axis. American Journal of Physiology - Cell Physiology, 2016, 311, C136-C149.	4.6	28
54	miRâ€17/20 Controls Prolyl Hydroxylase 2 (PHD2)/Hypoxiaâ€Inducible Factor 1 (HIF1) to Regulate Pulmonary Artery Smooth Muscle Cell Proliferation. Journal of the American Heart Association, 2016, 5, .	3.7	41

#	Article	IF	CITATIONS
55	Bortezomib alleviates experimental pulmonary hypertension by regulating intracellular calcium homeostasis in PASMCs. American Journal of Physiology - Cell Physiology, 2016, 311, C482-C497.	4.6	20
56	Genetic Insights into Pulmonary Arterial Hypertension. Application of Whole-Exome Sequencing to the Study of Pathogenic Mechanisms. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 393-397.	5.6	11
57	<i>Gasping for answers</i> . Focus on "Calpain activation by ROS mediates human ether-a-go-go-related gene protein degradation by intermittent hypoxia― American Journal of Physiology - Cell Physiology, 2016, 310, C432-C433.	4.6	2
58	ATP promotes cell survival via regulation of cytosolic [Ca ²⁺] and Bcl-2/Bax ratio in lung cancer cells. American Journal of Physiology - Cell Physiology, 2016, 310, C99-C114.	4.6	68
59	New insights into the pathology of pulmonary hypertension: implication of the miRâ€210/ <scp>ISCU</scp> 1/2/Feâ€6 axis. EMBO Molecular Medicine, 2015, 7, 689-691.	6.9	10
60	Upregulated expression of STIM2, TRPC6, and Orai2 contributes to the transition of pulmonary arterial smooth muscle cells from a contractile to proliferative phenotype. American Journal of Physiology - Cell Physiology, 2015, 308, C581-C593.	4.6	91
61	miRNA208/Mef2 and TNF- $\hat{l}\pm$ in Right Ventricular Dysfunction. Circulation Research, 2015, 116, 6-8.	4.5	12
62	Loss of MicroRNA-17â^1⁄492 in Smooth Muscle Cells Attenuates Experimental Pulmonary Hypertension via Induction of PDZ and LIM Domain 5. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 678-692.	5.6	67
63	Deficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L208-L220.	2.9	75
64	Notch Activation of Ca ²⁺ Signaling in the Development of Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 355-367.	2.9	86
65	HIF2α signaling inhibits adherens junctional disruption in acute lung injury. Journal of Clinical Investigation, 2015, 125, 652-664.	8.2	105
66	Raptor and Rictor Both Contribute to the Development and Progression of Pulmonary Arterial Hypertension. FASEB Journal, 2015, 29, 662.17.	0.5	0
67	Upregulated Copper Transporters in Hypoxia-Induced Pulmonary Hypertension. PLoS ONE, 2014, 9, e90544.	2.5	44
68	Flow shear stress enhances intracellular Ca ²⁺ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. American Journal of Physiology - Cell Physiology, 2014, 307, C373-C383.	4.6	54
69	The Sphingosine Kinase 1/Sphingosine-1-Phosphate Pathway in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1032-1043.	5.6	112
70	Adenosine Monophosphate–Activated Protein Kinase Is Required for Pulmonary Artery Smooth Muscle Cell Survival and the Development of Hypoxic Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 609-618.	2.9	59
71	Functional characterization of voltage-dependent Ca ²⁺ channels in mouse pulmonary arterial smooth muscle cells: divergent effect of ROS. American Journal of Physiology - Cell Physiology, 2013, 304, C1042-C1052.	4.6	18
72	Chronic hypoxia selectively enhances L- and T-type voltage-dependent Ca2+ channel activity in pulmonary artery by upregulating Cav1.2 and Cav3.2. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L154-L164.	2.9	73

#	Article	IF	CITATIONS
73	Transient receptor potential channels (TRPC) contribute to an enhanced endothelial cell proliferation and irreversible vascular remodeling associated with the development of pulmonary arterial hypertension (PAH). FASEB Journal, 2013, 27, 1140.14.	0.5	0
74	A Processâ€Based Review of Mouse Models of Pulmonary Hypertension. Pulmonary Circulation, 2012, 2, 415-433.	1.7	23
75	A Novel Function of Sphingosine Kinase 1 Suppression of JNK Activity in Preventing Inflammation and Injury. Journal of Biological Chemistry, 2010, 285, 15848-15857.	3.4	30