
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10988156/publications.pdf Version: 2024-02-01

INI-SIK KANC

#	Article	IF	CITATIONS
1	Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophysical Research Letters, 2005, 32, .	1.5	566
2	Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dynamics, 2013, 40, 493-509.	1.7	368
3	Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dynamics, 2009, 33, 93-117.	1.7	347
4	Ensemble Simulations of Asian–Australian Monsoon Variability by 11 AGCMs*. Journal of Climate, 2004, 17, 803-818.	1.2	287
5	Interactive Feedback between ENSO and the Indian Ocean. Journal of Climate, 2006, 19, 1784-1801.	1.2	273
6	Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nature Communications, 2017, 8, 15998.	5.8	202
7	El Niño and La Niña sea surface temperature anomalies: Asymmetry characteristics associated with their wind stress anomalies. Journal of Geophysical Research, 2002, 107, ACL 1-1.	3.3	160
8	Potential Predictability of Summer Mean Precipitation in a Dynamical Seasonal Prediction System with Systematic Error Correction. Journal of Climate, 2004, 17, 834-844.	1.2	155
9	A Systematic Relationship between Intraseasonal Variability and Mean State Bias in AGCM Simulations. Journal of Climate, 2011, 24, 5506-5520.	1.2	151
10	MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Climate Dynamics, 2017, 49, 4023-4045.	1.7	131
11	Atlantic forcing of Pacific decadal variability. Climate Dynamics, 2016, 46, 2337-2351.	1.7	125
12	Principal Modes of Climatological Seasonal and Intraseasonal Variations of the Asian Summer Monsoon. Monthly Weather Review, 1999, 127, 322-340.	0.5	120
13	Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophysical Research Letters, 2006, 33, .	1.5	112
14	The Impacts of Convective Parameterization and Moisture Triggering on AGCM-Simulated Convectively Coupled Equatorial Waves. Journal of Climate, 2008, 21, 883-909.	1.2	111
15	On the Need of Intermediate Complexity General Circulation Models: A "SPEEDY―Example. Bulletin of the American Meteorological Society, 2013, 94, 25-30.	1.7	104
16	Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. Journal of Geophysical Research, 2001, 106, 14219-14233.	3.3	94
17	Impacts of Cumulus Convection Parameterization on Aqua-planet AGCM Simulations of Tropical Intraseasonal Variability. Journal of the Meteorological Society of Japan, 2003, 81, 963-992.	0.7	86
18	El Niño–La Niña Asymmetry in the Coupled Model Intercomparison Project Simulations*. Journal of Climate, 2005, 18, 2617-2627.	1.2	84

#	Article	IF	CITATIONS
19	Decadal Climate Variability and Predictability: Challenges and Opportunities. Bulletin of the American Meteorological Society, 2018, 99, 479-490.	1.7	82
20	Seasonal climate predictability with Tier-one and Tier-two prediction systems. Climate Dynamics, 2008, 31, 403-416.	1.7	81
21	Thermodynamic controls of the Atlantic Niño. Nature Communications, 2015, 6, 8895.	5.8	81
22	Barotropic Models of the Extratropical Response to El Niflo. Journals of the Atmospheric Sciences, 1987, 44, 3576-3586.	0.6	80
23	Changes in El Niño and La Niña teleconnections over North Pacific–America in the global warming simulations. Theoretical and Applied Climatology, 2010, 100, 275-282.	1.3	76
24	ENSO Amplitude Modulation Associated with the Mean SST Changes in the Tropical Central Pacific Induced by Atlantic Multidecadal Oscillation. Journal of Climate, 2014, 27, 7911-7920.	1.2	76
25	A Systematic Approximation of the SST Anomaly Equation for ENSO Journal of the Meteorological Society of Japan, 2001, 79, 1-10.	0.7	73
26	Successive Modulation of ENSO to the Future Greenhouse Warming. Journal of Climate, 2008, 21, 3-21.	1.2	72
27	Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Climate Dynamics, 2008, 31, 213-226.	1.7	70
28	Assessment of MJO Predictability for Boreal Winter with Various Statistical and Dynamical Models. Journal of Climate, 2010, 23, 2368-2378.	1.2	67
29	Role of Longwave Cloud–Radiation Feedback in the Simulation of the Madden–Julian Oscillation. Journal of Climate, 2015, 28, 6979-6994.	1.2	59
30	Recent Acceleration of Arabian Sea Warming Induced by the Atlanticâ€Western Pacific Transâ€basin Multidecadal Variability. Geophysical Research Letters, 2019, 46, 1662-1671.	1.5	59
31	Dynamic seasonal prediction and predictability of the monsoon. , 2006, , 585-612.		59
32	Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophysical Research Letters, 2005, 32, .	1.5	57
33	The Role of Zonal Advection Feedback in Phase Transition and Growth of ENSO in the Cane-Zebiak Model. Journal of the Meteorological Society of Japan, 1999, 77, 1151-1160.	0.7	54
34	An Equatorial–Extratropical Dipole Structure of the Atlantic Niño. Journal of Climate, 2016, 29, 7295-7311.	1.2	54
35	A statistical approach to Indian Ocean sea surface temperature prediction using a dynamical ENSO prediction. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	53
36	Symmetric and antisymmetric mass exchanges between the equatorial and off-equatorial Pacific associated with ENSO. Journal of Geophysical Research, 2003, 108, .	3.3	52

IN-SIK KANG

#	Article	IF	CITATIONS
37	Stateâ€dependent atmospheric noise associated with ENSO. Geophysical Research Letters, 2008, 35, .	1.5	52
38	Interactive Feedback between ENSO and the Indian Ocean in an Interactive Ensemble Coupled Model. Journal of Climate, 2006, 19, 6371-6381.	1.2	51
39	Multidecadal Changes in the Relationship between ENSO and Wet-Season Precipitation in the Arabian Peninsula. Journal of Climate, 2015, 28, 4743-4752.	1.2	51
40	A bulk mass flux convection scheme for climate model: description and moisture sensitivity. Climate Dynamics, 2012, 38, 411-429.	1.7	49
41	The Goddard Cumulus Ensemble model (GCE): Improvements and applications for studying precipitation processes. Atmospheric Research, 2014, 143, 392-424.	1.8	49
42	Structure of AGCM-Simulated Convectively Coupled Kelvin Waves and Sensitivity to Convective Parameterization. Journals of the Atmospheric Sciences, 2011, 68, 26-45.	0.6	48
43	The Role of SST Structure in Convectively Coupled Kelvin–Rossby Waves and Its Implications for MJO Formation. Journal of Climate, 2013, 26, 5915-5930.	1.2	48
44	Forced and Free Intraseasonal Variability over the South Asian Monsoon Region Simulated by 10 AGCMs. Journal of Climate, 2002, 15, 2862-2880.	1.2	48
45	Interannual variations of the boreal summer intraseasonal variability predicted by ten atmosphere–ocean coupled models. Climate Dynamics, 2008, 30, 485-496.	1.7	46
46	Mechanism for northward propagation of boreal summer intraseasonal oscillation: Convective momentum transport. Geophysical Research Letters, 2010, 37, .	1.5	46
47	An El-Nino Prediction System using an intermediate ocean and a statistical atmosphere. Geophysical Research Letters, 2000, 27, 1167-1170.	1.5	45
48	Impact of diurnal atmosphere–ocean coupling on tropical climate simulations using a coupled GCM. Climate Dynamics, 2010, 34, 905-917.	1.7	44
49	A mechanism denial study on the Madden-Julian Oscillation. Journal of Advances in Modeling Earth Systems, 2011, 3, .	1.3	41
50	The Influence of ENSO on the Generation of Decadal Variability in the North Pacific*. Journal of Climate, 2007, 20, 667-680.	1.2	39
51	Sensitivity of MJO Simulation and Predictability to Sea Surface Temperature Variability. Journal of Climate, 2008, 21, 5304-5317.	1.2	38
52	Ocean–atmosphere coupling and the boreal winter MJO. Climate Dynamics, 2010, 35, 771-784.	1.7	36
53	Systematic Error Correction of Dynamical Seasonal Prediction of Sea Surface Temperature Using a Stepwise Pattern Project Method. Monthly Weather Review, 2008, 136, 3501-3512.	0.5	34
54	Role of moist energy advection in formulating anomalous Walker Circulation associated with El Niño. Journal of Geophysical Research, 2007, 112, .	3.3	33

#	Article	IF	CITATIONS
55	Saudi-KAU Coupled Global Climate Model: Description and Performance. Earth Systems and Environment, 2017, 1, 1.	3.0	33
56	A near-annual coupled ocean-atmosphere mode in the equatorial Pacific ocean. Geophysical Research Letters, 2003, 30, .	1.5	32
57	Theoretical examination of a multi-model composite for seasonal prediction. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	32
58	Global Sea Surface Temperature Prediction Using a Multimodel Ensemble. Monthly Weather Review, 2007, 135, 3239-3247.	0.5	32
59	GCMs with implicit and explicit representation of cloud microphysics for simulation of extreme precipitation frequency. Climate Dynamics, 2015, 45, 325-335.	1.7	32
60	Principal Modes of Atmospheric Variability in Model Atmospheres with and without Anomalous Sea Surface Temperature Forcing in the Tropical Pacific. Journals of the Atmospheric Sciences, 1986, 43, 2719-2735.	0.6	31
61	Effects of the low-frequency zonal wind variation on the high frequency atmospheric variability over the tropics. Climate Dynamics, 2009, 33, 495-507.	1.7	30
62	Analysis of Intraseasonal and Interannual Variability of the Asian Summer Monsoon Using a Hidden Markov Model. Journal of Climate, 2010, 23, 5498-5516.	1.2	30
63	Kelvin and Rossby Wave Contributions to the SST Oscillation of ENSO. Journal of Climate, 1998, 11, 2461-2469.	1.2	29
64	Principal Modes of Atmospheric Circulation Anomalies Associated with Global Angular Momentum Fluctuations. Journals of the Atmospheric Sciences, 1994, 51, 1194-1205.	0.6	29
65	Vertical structure variability in the equatorial Pacific before and after the Pacific climate shift of the 1970s. Geophysical Research Letters, 2004, 31, .	1.5	28
66	The Inverse Effect of Annual-Mean State and Annual-Cycle Changes on ENSO. Journal of Climate, 2010, 23, 1095-1110.	1.2	28
67	Interannual rainfall variability and ECMWF‣ys4â€based predictability over the Arabian Peninsula winter monsoon region. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 233-242.	1.0	28
68	A Near-Annual Pacific Ocean Basin Mode. Journal of Climate, 2004, 17, 2478-2488.	1.2	26
69	A Moist Benchmark Calculation for Atmospheric General Circulation Models. Journal of Climate, 2008, 21, 4934-4954.	1.2	26
70	Atlantic Ocean influence on Middle East summer surface air temperature. Npj Climate and Atmospheric Science, 2020, 3, .	2.6	25
71	The impact of ocean–atmosphere coupling on the predictability of boreal summer intraseasonal oscillation. Climate Dynamics, 2008, 31, 859-870.	1.7	24
72	Simulation of state-dependent high-frequency atmospheric variability associated with ENSO. Climate Dynamics, 2009, 32, 635-648.	1.7	24

#	Article	IF	CITATIONS
73	Linear and Nonlinear Diagnostic Models of Stationary Eddies in the Upper Troposphere during Northern Summer. Journals of the Atmospheric Sciences, 1986, 43, 3045-3057.	0.6	23
74	A Further Investigation of the Recharge Oscillator Paradigm for ENSO Using a Simple Coupled Model with the Zonal Mean and Eddy Separated. Journal of Climate, 2000, 13, 1987-1993.	1.2	23
75	New approach for optimal perturbation method in ensemble climate prediction with empirical singular vector. Climate Dynamics, 2010, 35, 331-340.	1.7	23
76	Assessment of the longâ€lead probabilistic prediction for the Asian summer monsoon precipitation (1983–2011) based on the APCC multimodel system and a statistical model. Journal of Geophysical Research, 2012, 117, .	3.3	22
77	Roles of Barotropic Convective Momentum Transport in the Intraseasonal Oscillation*. Journal of Climate, 2015, 28, 4908-4920.	1.2	22
78	Long-term ENSO relationship to precipitation and storm frequency over western Himalaya–Karakoram–Hindukush region during the winter season. Climate Dynamics, 2019, 53, 5265-5278.	1.7	22
79	The Decadal ENSO Variability in a Hybrid Coupled Model. Journal of Climate, 2004, 17, 1225-1238.	1.2	21
80	Improvement of seasonal forecasts with inclusion of tropical instability waves on initial conditions. Climate Dynamics, 2011, 36, 1277-1290.	1.7	21
81	A quantitative assessment of changes in seasonal potential predictability for the twentieth century. Climate Dynamics, 2013, 41, 2697-2709.	1.7	21
82	Climate responses in the tropical pacific associated with atlantic warming in recent decades. Asia-Pacific Journal of Atmospheric Sciences, 2013, 49, 209-217.	1.3	20
83	Examination of multi-model ensemble seasonal prediction methods using a simple climate system. Climate Dynamics, 2006, 26, 285-294.	1.7	19
84	Simulated impacts of the South Atlantic Ocean Dipole on summer precipitation at the Guinea Coast. Climate Dynamics, 2013, 41, 677-694.	1.7	19
85	Examination of multi-perturbation methods for ensemble prediction of the MJO during boreal summer. Climate Dynamics, 2014, 42, 2627-2637.	1.7	19
86	Impact of transient eddies on extratropical seasonal-mean predictability in DEMETER models. Climate Dynamics, 2011, 37, 509-519.	1.7	18
87	The Characteristic Variability of Boreal Wintertime Atmospheric Circulation in El Niño Events. Journal of Climate, 2002, 15, 892-904.	1.2	17
88	Mechanisms of diurnal precipitation over the US Great Plains: a cloud resolving model perspective. Climate Dynamics, 2010, 34, 419-437.	1.7	17
89	Contribution of Synoptic Transients to the Potential Predictability of PNA Circulation Anomalies: El Niño versus La Niña. Journal of Climate, 2015, 28, 8347-8362.	1.2	17
90	Effects of cloudâ€radiative heating on atmospheric general circulation model (AGCM) simulations of convectively coupled equatorial waves. Journal of Geophysical Research, 2007, 112, .	3.3	16

#	Article	IF	CITATIONS
91	Multidecadal Changes in the Relationship of Storm Frequency over Euro-Mediterranean Region and ENSO During Boreal Winter. Earth Systems and Environment, 2017, 1, 1.	3.0	16
92	Principal modes of intraseasonal variations in atmospheric angular momentum and tropical convection. Journal of Geophysical Research, 1989, 94, 6319-6332.	3.3	15
93	Impact of El Niño onset timing on the Indian Ocean: Pacific coupling and subsequent El Niño evolution. Theoretical and Applied Climatology, 2009, 97, 17-27.	1.3	15
94	Prediction from Weeks to Decades. , 2013, , 205-235.		13
95	Optimal initial perturbations for El Nino ensemble prediction with ensemble Kalman filter. Climate Dynamics, 2009, 33, 959-973.	1.7	12
96	Extended-Range Forecasts of Areal-Averaged Rainfall over Saudi Arabia. Weather and Forecasting, 2015, 30, 1090-1105.	0.5	12
97	A practical approach to scale-adaptive deep convection in a GCM by controlling the cumulus base mass flux. Npj Climate and Atmospheric Science, 2018, 1, .	2.6	12
98	The impacts of the model assimilated wind stress data in the initialization of an intermediate ocean and the ENSO predictability. Geophysical Research Letters, 2001, 28, 3713-3716.	1.5	11
99	The characteristic oscillation induced by coupled processes between oceanic vertical modes and atmospheric modes in the tropical Pacific. Geophysical Research Letters, 2001, 28, 2847-2850.	1.5	11
100	Secular increase of seasonal predictability for the 20th century. Geophysical Research Letters, 2006, 33, .	1.5	11
101	Spring Aleutian Low Weakening and Surface Cooling Trend in Northwest North America During Recent Decades. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12078-12092.	1.2	11
102	Tropical Pacific basin-wide adjustment and oceanic waves. Geophysical Research Letters, 2001, 28, 3975-3978.	1.5	10
103	Association of Interannual and Interdecadal Variations of Clobal-Mean Temperature with Tropical Pacific SST Appearing in a Model and Observations. Journal of Climate, 1996, 9, 455-464.	1.2	9
104	El-Nino Southern Oscillation simulated and predicted in SNU coupled GCMs. Climate Dynamics, 2012, 38, 2227-2242.	1.7	8
105	A mass flux closure function in a GCM based on the Richardson number. Climate Dynamics, 2014, 42, 1129-1138.	1.7	8
106	Evolution of Tropical Circulation Anomalies Associated with 30-60 day Oscillation of Globally Averaged Angular Momentum during Northern Summer. Journal of the Meteorological Society of Japan, 1990, 68, 237-249.	0.7	7
107	Western Pacific SST Prediction with an Intermediate El Niño Prediction Model. Monthly Weather Review, 2005, 133, 1343-1352.	0.5	7
108	Influence of Convective Momentum Transport on Mixed Rossby–Gravity Waves: A Contribution to Tropical 2-Day Waves. Journals of the Atmospheric Sciences, 2013, 70, 2467-2475.	0.6	7

IN-SIK KANG

#	Article	IF	CITATIONS
109	Scale interaction between tropical instability waves and lowâ€frequency oceanic flows. Geophysical Research Letters, 2010, 37, .	1.5	6
110	Empirical singular vector method for ensemble El Niño–Southern Oscillation prediction with a coupled general circulation model. Journal of Geophysical Research, 2011, 116, .	3.3	6
111	Source of low frequency modulation of ENSO amplitude in a CGCM. Climate Dynamics, 2007, 29, 101-111.	1.7	5
112	Coupled bred vectors in the tropical Pacific and their application to ENSO prediction. Progress in Oceanography, 2012, 105, 90-101.	1.5	5
113	A GCM with cloud microphysics and its MJO simulation. Geoscience Letters, 2016, 3, .	1.3	5
114	Growingâ€error correction of ensemble Kalman filter using empirical singular vectors. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 2051-2060.	1.0	4
115	The Internal and ENSO-Forced Modes of the Indian Ocean Sea Surface Temperature. Journal of Climate, 2022, 35, 4191-4206.	1.2	4
116	Interannual Variability of Winter Mean Precipitation and Upper-Level Circulation in Extended GCM Integrations with and without Interannual Variation of Tropical Pacific SST. Journal of the Meteorological Society of Japan, 1988, 66, 741-751.	0.7	3
117	Sensitivity of the equatorial air—sea coupled system to the zonal phase difference between SST and wind stress. Advances in Atmospheric Sciences, 2001, 18, 155-165.	1.9	2
118	GCMs With Full Representation of Cloud Microphysics and Their MJO Simulations. , 2019, , 305-319.		1
119	A Gray Zone GCM with Full Representation of Cloud Microphysics. Springer Atmospheric Sciences, 2019, , 139-155.	0.4	0