Ali Fathi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10988091/publications.pdf Version: 2024-02-01

	471371	552653
1,312	17	26
citations	h-index	g-index
33	33	2397
docs citations	times ranked	citing authors
	citations 33	1,31217citationsh-index3333

Διι Ελτμι

#	Article	IF	CITATIONS
1	Biomedical Applications of Biodegradable Polyesters. Polymers, 2016, 8, 20.	2.0	363
2	Extraction of antioxidants from winery wastes using subcritical water. Journal of Supercritical Fluids, 2012, 65, 18-24.	1.6	153
3	The effect of elastin on chondrocyte adhesion and proliferation on poly (É›-caprolactone)/elastin composites. Biomaterials, 2011, 32, 1517-1525.	5.7	112
4	Elastin based cell-laden injectable hydrogels with tunable gelation, mechanical and biodegradation properties. Biomaterials, 2014, 35, 5425-5435.	5.7	77
5	Fabrication of porous PCL/elastin composite scaffolds for tissue engineering applications. Journal of Supercritical Fluids, 2011, 59, 157-167.	1.6	74
6	Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomaterialia, 2021, 136, 1-36.	4.1	61
7	Reinforced Poly(Propylene Carbonate) Composite with Enhanced and Tunable Characteristics, an Alternative for Poly(lactic Acid). ACS Applied Materials & Interfaces, 2015, 7, 22421-22430.	4.0	54
8	Skin wound repair: Results of a pre-clinical study to evaluate electropsun collagen–elastin–PCL scaffolds as dermal substitutes Burns, 2019, 45, 1639-1648.	1.1	53
9	An efficient liposome based method for antioxidants encapsulation. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1067-1072.	2.5	48
10	Mechanical Properties of Plasma Immersion Ion Implanted PEEK for Bioactivation of Medical Devices. ACS Applied Materials & Interfaces, 2015, 7, 23029-23040.	4.0	44
11	Fabrication of a Biodegradable Implant with Tunable Characteristics for Bone Implant Applications. Biomacromolecules, 2017, 18, 1736-1746.	2.6	42
12	Tropoelastin Incorporation into a Dermal Regeneration Template Promotes Wound Angiogenesis. Advanced Healthcare Materials, 2015, 4, 577-584.	3.9	38
13	Fabrication of interpenetrating polymer network to enhanceÂthe biological activity of synthetic hydrogels. Polymer, 2013, 54, 5534-5542.	1.8	35
14	A Novel Strategy for Softening Gelatin–Bioactive-Glass Hybrids. ACS Applied Materials & Interfaces, 2016, 8, 1676-1686.	4.0	30
15	A renewable and compostable polymer for reducing consumption of non-degradable plastics. Polymer Degradation and Stability, 2016, 133, 174-181.	2.7	25
16	Enhancing the mechanical properties and physical stability of biomimetic polymer hydrogels for micro-patterning and tissue engineering applications. European Polymer Journal, 2014, 59, 161-170.	2.6	21
17	A green process for the purification of biodegradable poly(β-hydroxybutyrate). Journal of Supercritical Fluids, 2018, 135, 84-90.	1.6	21
18	Injectable porcine bone demineralized and digested extracellular matrix—PEGDA hydrogel blend for bone regeneration. Journal of Materials Science: Materials in Medicine, 2020, 31, 21.	1.7	13

Ali Fathi

#	Article	IF	CITATIONS
19	A benign process for the recovery of solanesol from tomato leaf waste. Heliyon, 2019, 5, e01523.	1.4	12
20	Local coâ€delivery of rh <scp>BMP</scp> â€2 and cathepsin K inhibitor L006235 in poly(<scp>d,l</scp> â€lactideâ€ <i>co</i> â€glycolide) nanospheres. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 136-144.	1.6	9
21	Sustained Protein Release from a Coreâ€5hell Drug Carrier System Comprised of Mesoporous Nanoparticles and an Injectable Hydrogel. Macromolecular Bioscience, 2018, 18, 1800201.	2.1	8
22	Challenges for Cartilage Regeneration. Springer Series in Biomaterials Science and Engineering, 2017, , 389-466.	0.7	7
23	The effects of crossâ€linking a collagenâ€elastin dermal template on scaffold bioâ€stability and degradation. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1189-1200.	1.3	6
24	A comparative histomorphological and micro computed tomography study of the primary stability and the osseointegration of The Sydney Mini Screw; a qualitative pilot animal study in New Zealand rabbits. European Journal of Orthodontics, 2019, 41, 360-369.	1.1	3
25	Wound Healing: Tropoelastin Incorporation into a Dermal Regeneration Template Promotes Wound Angiogenesis (Adv. Healthcare Mater. 4/2015). Advanced Healthcare Materials, 2015, 4, 576-576.	3.9	1
26	An injectable bone graft substitute to enhance the primary stability of a novel miniscrew – The Sydney Mini Screw. Australasian Orthodontic Journal, 2018, 34, 179-187.	0.3	1
27	Fabrication of interpenetrate chitosan: Bioactive glass, using dense gas CO <inf>2</inf> . , 2011, 2011, 2459-63.		0
28	Synthesis of functionalized-thermo responsive-water soluble co-polymer for conjugation to protein for biomedical applications. Materials Research Society Symposia Proceedings, 2013, 1498, 121-125.	0.1	0
29	The Effect of Cellulose Nanofibres on Mechanical Properties and Bioactivity of Natural Polymers. Materials Research Society Symposia Proceedings, 2013, 1498, 85-89.	0.1	0

30 Hydrogel Architecture. , 2016, , 81-129.

0