Matthew J Large

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1098708/publications.pdf

Version: 2024-02-01

35 papers	539 citations	687363 13 h-index	22 g-index
36	36	36	963
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Size selection and thin-film assembly of MoS ₂ elucidates thousandfold conductivity enhancement in few-layer nanosheet networks. Nanoscale, 2022, 14, 320-324.	5.6	4
2	Tuneable synthetic reduced graphene oxide scaffolds elicit high levels of three-dimensional glioblastoma interconnectivity <i>in vitro</i> . Journal of Materials Chemistry B, 2022, 10, 373-383.	5.8	4
3	Nanosheet-Stabilized Emulsions: Near-Minimum Loading and Surface Energy Design of Conductive Networks. ACS Nano, 2022, 16, 1963-1973.	14.6	8
4	Structural Defects Modulate Electronic and Nanomechanical Properties of 2D Materials. ACS Nano, 2021, 15, 2520-2531.	14.6	46
5	Cell–Substrate Interactions Lead to Internalization and Localization of Layered MoS ₂ Nanosheets. ACS Applied Nano Materials, 2021, 4, 2002-2010.	5.0	5
6	Graphene-based printable conductors for cyclable strain sensors on elastomeric substrates. Carbon, 2020, 169, 25-31.	10.3	18
7	Laser-Deposited Carbon Aerogel Derived from Graphene Oxide Enables NO ₂ -Selective Parts-per-Billion Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39541-39548.	8.0	7
8	Surfactant-free liquid-exfoliated copper hydroxide nanocuboids for non-enzymatic electrochemical glucose detection. Journal of Materials Chemistry B, 2020, 8, 7733-7739.	5.8	7
9	Langmuir Films of Layered Nanomaterials: Edge Interactions and Cell Culture Applications. Journal of Physical Chemistry B, 2020, 124, 7184-7193.	2.6	2
10	Mechanochromic and Thermochromic Sensors Based on Graphene Infused Polymer Opals. Advanced Functional Materials, 2020, 30, 2002473.	14.9	48
11	Largeâ€Scale Surfactant Exfoliation of Graphene and Conductivityâ€Optimized Graphite Enabling Wireless Connectivity. Advanced Materials Technologies, 2020, 5, 2000284.	5 . 8	27
12	Ultrasensitive Strain Gauges Enabled by Grapheneâ€Stabilized Silicone Emulsions. Advanced Functional Materials, 2020, 30, 2002433.	14.9	15
13	Raman Metrics for Molybdenum Disulfide and Graphene Enable Statistical Mapping of Nanosheet Populations. Chemistry of Materials, 2020, 32, 6213-6221.	6.7	11
14	Charge Transfer Hybrids of Graphene Oxide and the Intrinsically Microporous Polymer PIM-1. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31191-31199.	8.0	9
15	Sonochemical edge functionalisation of molybdenum disulfide. Nanoscale, 2019, 11, 15550-15560.	5. 6	4
16	Size selection of liquid-exfoliated 2D nanosheets. 2D Materials, 2019, 6, 031002.	4.4	36
17	Conjugated Polymer Nanoparticle–Graphene Oxide Charge‶ransfer Complexes. Advanced Functional Materials, 2018, 28, 1707548.	14.9	26
18	Functional liquid structures by emulsification of graphene and other two-dimensional nanomaterials. Nanoscale, 2018, 10, 1582-1586.	5. 6	15

#	Article	IF	CITATIONS
19	Percolating Metallic Structures Templated on Laser-Deposited Carbon Nanofoams Derived from Graphene Oxide: Applications in Humidity Sensing. ACS Applied Nano Materials, 2018, 1, 1828-1835.	5.0	12
20	Carbon Nanofoam Supercapacitor Electrodes with Enhanced Performance Using a Water-Transfer Process. ACS Omega, 2018, 3, 15134-15139.	3.5	3
21	Edge-Selective Gas Detection Using Langmuir Films of Graphene Platelets. ACS Applied Materials & Interfaces, 2018, 10, 21740-21745.	8.0	11
22	Functionalization of Silver Nanowire Transparent Electrodes with Self-Assembled 2-Dimensional Tectomer Nanosheets. ACS Applied Nano Materials, 2018, 1, 3903-3912.	5.0	7
23	Selective Mechanical Transfer Deposition of Langmuir Graphene Films for High-Performance Silver Nanowire Hybrid Electrodes. Langmuir, 2017, 33, 12038-12045.	3.5	11
24	Pristine carbon nanotube scaffolds for the growth of chondrocytes. Journal of Materials Chemistry B, 2017, 5, 8178-8182.	5.8	13
25	Understanding Solvent Spreading for Langmuir Deposition of Nanomaterial Films: A Hansen Solubility Parameter Approach. Langmuir, 2017, 33, 14766-14771.	3.5	29
26	Considerations for spectroscopy of liquid-exfoliated 2D materials: emerging photoluminescence of N-methyl-2-pyrrolidone. Scientific Reports, 2017, 7, 16706.	3.3	33
27	Predicting the optoelectronic properties of nanowire films based on control of length polydispersity. Scientific Reports, 2016, 6, 25365.	3.3	22
28	High performance transparent multi-touch sensors based on silver nanowires. Materials Today Communications, 2016, 7, 42-50.	1.9	36
29	Finite-size scaling in silver nanowire films: design considerations for practical devices. Nanoscale, 2016, 8, 13701-13707.	5. 6	9
30	Stretchable Conductive Networks of Carbon Nanotubes Using Plasticized Colloidal Templates. Frontiers in Materials, 2015, 2, .	2.4	0
31	A Phase-Field Solidification Model of Almost Pure ITS-90 Fixed Points. International Journal of Thermophysics, 2014, 35, 1109-1126.	2.1	3
32	Compatibility of Materials for Use at High Temperatures with W–Re Thermocouples. International Journal of Thermophysics, 2014, 35, 1202-1214.	2.1	8
33	Insulatorâ€Conductor Type Transitions in Grapheneâ€Modified Silver Nanowire Networks: A Route to Inexpensive Transparent Conductors. Advanced Functional Materials, 2014, 24, 7580-7587.	14.9	33
34	Impurity and thermal modelling of SPRT fixed-points. , 2013, , .		7
35	Parallel Optics in Waveguide Displays: A Flat Panel Autostereoscopic Display. Journal of Display Technology, 2010, 6, 431-437.	1.2	9