
Runtian Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10985871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interlayer gap widened TiS2 for highly efficient sodium-ion storage. Journal of Materials Science and Technology, 2022, 107, 64-69.	5.6	50
2	Controllable C-N site assisting observable potential difference for homogeneous copper deposition in aqueous Cu-S batteries. Energy Storage Materials, 2022, 48, 74-81.	9.5	28
3	Hydrophilic bi-functional B-doped g-C3N4 hierarchical architecture for excellent photocatalytic H2O2 production and photoelectrochemical water splitting. Journal of Energy Chemistry, 2022, 70, 236-247.	7.1	66
4	Vacancy defect engineering in semiconductors for solar lightâ€driven environmental remediation and sustainable energy production. , 2022, 1, 213-255.		46
5	Three-dimensionally ordered macroporous materials for photo/electrocatalytic sustainable energy conversion, solar cell and energy storage. EnergyChem, 2022, 4, 100081.	10.1	12
6	Emerging semiconductors and metal-organic-compounds-related photocatalysts for sustainable hydrogen peroxide production. Matter, 2022, 5, 2119-2167.	5.0	37
7	Controllable defect engineering enhanced bond strength for stable electrochemical energy storage. Nano Energy, 2021, 79, 105460.	8.2	76
8	Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage. Chemical Engineering Journal, 2021, 421, 127767.	6.6	64
9	Cu ₂ Nb ₃₄ O ₈₇ nanowires as a superior lithium storage host in advanced rechargeable batteries. Inorganic Chemistry Frontiers, 2021, 8, 444-451.	3.0	31
10	Insight into the Synergistic Effect of N, S Coâ€Doping for Carbon Coating Layer on Niobium Oxide Anodes with Ultra‣ong Life. Advanced Functional Materials, 2021, 31, 2100311.	7.8	82
11	A TiSe ₂ â€Graphite Dual Ion Battery: Fast Naâ€Ion Insertion and Excellent Stability. Angewandte Chemie - International Edition, 2021, 60, 18430-18437.	7.2	102
12	A TiSe ₂ â€Graphite Dual Ion Battery: Fast Naâ€Ion Insertion and Excellent Stability. Angewandte Chemie, 2021, 133, 18578-18585.	1.6	10
13	Frontispiece: A TiSe ₂ â€Graphite Dual Ion Battery: Fast Naâ€lon Insertion and Excellent Stability. Angewandte Chemie - International Edition, 2021, 60, .	7.2	0
14	Frontispiz: A TiSe ₂ â€Graphite Dual Ion Battery: Fast Naâ€Ion Insertion and Excellent Stability. Angewandte Chemie, 2021, 133, .	1.6	0
15	Insight into anion storage batteries: Materials, properties and challenges. Energy Storage Materials, 2021, 42, 42-67.	9.5	28
16	An anode-free aqueous dual-ion battery. Sustainable Energy and Fuels, 2021, 5, 3298-3302.	2.5	9
17	Metal selenides for high performance sodium ion batteries. Chemical Engineering Journal, 2020, 380, 122557.	6.6	154
18	Rational construction and decoration of Fe0.5Nb24.5O62â^'x@C nanowires as superior anode material for lithium storage. Chemical Engineering Journal, 2020, 384, 123314.	6.6	16

RUNTIAN ZHENG

#	Article	IF	CITATIONS
19	The journey of lithium ions in the lattice of PNb ₉ O ₂₅ . Materials Chemistry Frontiers, 2020, 4, 631-637.	3.2	15
20	Synthesis and characterization of GaNb11O29@C for high-performance lithium-ion battery. Ceramics International, 2020, 46, 5913-5919.	2.3	7
21	PNb9O25 nanofiber as a high-voltage anode material for advanced lithium ions batteries. Journal of Materiomics, 2020, 6, 781-787.	2.8	8
22	Carbon layer on the surface of PNb9O25 nanowires offers lots of areas for charge transfer. Ceramics International, 2020, 46, 29073-29079.	2.3	0
23	Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Materials, 2020, 32, 65-90.	9.5	225
24	Boosting Coulombic Efficiency of Conversionâ€Reaction Anodes for Potassiumâ€lon Batteries via Confinement Effect. Advanced Functional Materials, 2020, 30, 2007712.	7.8	68
25	Micronano Porous Mo ₂ C@C Nanorods Composites as Robust Anodes for Liâ€ion Battery. Energy Technology, 2020, 8, 2070065.	1.8	2
26	Na2Li2Ti6O14 nanowires as ultra-long cycling performance anode material for lithium ion storage. Ceramics International, 2020, 46, 15699-15704.	2.3	10
27	Micronano Porous Mo 2 C@C Nanorods Composites as Robust Anodes for Liâ€ion Battery. Energy Technology, 2020, 8, 2000189.	1.8	2
28	Commercially available Prussian blue get energetic in aqueous K-ion batteries. Chemical Engineering Journal, 2020, 394, 124923.	6.6	61
29	Electrochemical uptake/release of lithium in GaNb11O29 nanowires as anode material for rechargeable lithium ion battery. Ceramics International, 2020, 46, 20537-20544.	2.3	5
30	BaNb3.6O10 nanowires with superior electrochemical performance towards ultrafast and highly stable lithium storage. Energy Storage Materials, 2019, 16, 400-410.	9.5	43
31	Constructing hierarchical MnO2/Co3O4 heterostructure hollow spheres for high-performance Li-Ion batteries. Journal of Power Sources, 2019, 437, 226904.	4.0	33
32	Commercially available InSb as a high-performance anode for secondary batteries towards superior lithium storage. Sustainable Energy and Fuels, 2019, 3, 2668-2674.	2.5	13
33	Review on niobium-based chalcogenides for electrochemical energy storage devices: Application and progress. Nano Energy, 2019, 65, 104049.	8.2	46
34	FeNb11O29 nanotubes: Superior electrochemical energy storage performance and operating mechanism. Nano Energy, 2019, 58, 399-409.	8.2	83
35	Fabrication of one-dimensional architecture Bi5Nb3O15 nanowires by electrospinning for lithium-ion batteries with enhanced electrochemical performance. Electrochimica Acta, 2019, 299, 894-901.	2.6	16
36	Facile synthesis of Y2(MoO4)3 nanowires as anode materials towards enhanced lithium storage performance. Journal of Electroanalytical Chemistry, 2019, 841, 111-118.	1.9	8

RUNTIAN ZHENG

#	Article	IF	CITATIONS
37	VNb9O25 nanowires with superior electrochemical property towards lithium ion batteries. Ceramics International, 2019, 45, 18111-18114.	2.3	16
38	Observation of ZrNb ₁₄ O ₃₇ Nanowires as a Lithium Container via In Situ and Ex Situ Techniques for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 22429-22438.	4.0	23
39	Preparation of TiNb6O17 nanospheres as high-performance anode candidates for lithium-ion storage. Chemical Engineering Journal, 2019, 374, 937-946.	6.6	37
40	Lab‣cale In Situ Xâ€Ray Diffraction Technique for Different Battery Systems: Designs, Applications, and Perspectives. Small Methods, 2019, 3, 1900119.	4.6	39
41	In situ characterization of LiY(WO4)2 nanotubes for electrochemical energy storage. Ceramics International, 2019, 45, 11812-11818.	2.3	1
42	Constructing Hollow Nanofibers To Boost Electrochemical Performance: Insight into Kinetics and the Li Storage Mechanism for CrNb ₄₉ O ₁₂₄ . ACS Applied Energy Materials, 2019, 2, 2672-2679.	2.5	12
43	Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy, 2019, 60, 340-361.	8.2	146
44	H0.92K0.08TiNbO5 Nanowires Enabling High-Performance Lithium-Ion Uptake. ACS Applied Materials & Interfaces, 2019, 11, 9136-9143.	4.0	13
45	AgNb13O33: A new anode material with high energy storage performance. Chemical Engineering Journal, 2019, 366, 246-253.	6.6	13
46	Pretreated commercial TiSe2 as an insertion-type potassium container for constructing "Rocking-Chair―type potassium ion batteries. Energy Storage Materials, 2019, 22, 154-159.	9.5	71
47	LiY(MoO4)2 nanotubes: Novel zero-strain anode for electrochemical energy storage. Energy Storage Materials, 2019, 21, 297-307.	9.5	27
48	An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Materials, 2019, 18, 68-91.	9.5	113
49	K ₂ Nb ₈ O ₂₁ nanotubes with superior electrochemical performance for ultrastable lithium storage. Journal of Materials Chemistry A, 2018, 6, 8620-8632.	5.2	51
50	Electrospinning of hierarchical structure Nd10W22O81 nanowires as high performance lithium storage anode for rechargeable batteries. Ceramics International, 2018, 44, 4080-4087.	2.3	2
51	Carbon-coated Bi5Nb3O15 as anode material in rechargeable batteries for enhanced lithium storage. Ceramics International, 2018, 44, 11505-11511.	2.3	13
52	Ultrathin W9Nb8O47 nanofibers modified with thermal NH3 for superior electrochemical energy storage Materials, 2018, 14, 159-168.	9.5	55
53	Highly efficient lithium container based on non-Wadsley-Roth structure Nb18W16O93 nanowires for electrochemical energy storage. Electrochimica Acta, 2018, 292, 331-338.	2.6	49
54	Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container. Nano Energy, 2018, 54, 227-237.	8.2	96

RUNTIAN ZHENG

#	Article	IF	CITATIONS
55	Ultra-long BiNbO4 nanowires with hierarchical architecture exhibiting reversible lithium storage. Journal of Electroanalytical Chemistry, 2018, 823, 245-252.	1.9	10
56	Lithium, sodium and potassium storage behaviors of Pb3Nb4O13 nanowires for rechargeable batteries. Ceramics International, 2018, 44, 17094-17101.	2.3	16
57	Nano-structured GeNb18O47 as novel anode host with superior lithium storage performance. Electrochimica Acta, 2018, 282, 634-641.	2.6	19
58	K6Nb10.8O30 groove nanobelts as high performance lithium-ion battery anode towards long-life energy storage. Nano Energy, 2018, 52, 192-202.	8.2	57
59	Rapid and durable electrochemical storage behavior enabled by V ₄ Nb ₁₈ O ₅₅ beaded nanofibers: a joint theoretical and experimental study. Journal of Materials Chemistry A, 2018, 6, 17389-17400.	5.2	24