
Brice A Kuhl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/109853/publications.pdf Version: 2024-02-01

RDICE A KILLI

#	Article	IF	CITATIONS
1	Long-term memory interference is resolved via repulsion and precision along diagnostic memory dimensions. Psychonomic Bulletin and Review, 2022, 29, 1898-1912.	2.8	3
2	Adaptive Memory Distortions Are Predicted by Feature Representations in Parietal Cortex. Journal of Neuroscience, 2021, 41, 3014-3024.	3.6	3
3	Cortical Representations of Visual Stimuli Shift Locations with Changes in Memory States. Current Biology, 2021, 31, 1119-1126.e5.	3.9	23
4	Adaptive Repulsion of Long-Term Memory Representations Is Triggered by Event Similarity. Psychological Science, 2021, 32, 705-720.	3.3	12
5	Abrupt hippocampal remapping signals resolution of memory interference. Nature Communications, 2021, 12, 4816.	12.8	20
6	When the Memory System Gets Ahead of Itself. Trends in Cognitive Sciences, 2020, 24, 961-962.	7.8	0
7	Transforming the Concept of Memory Reactivation. Trends in Neurosciences, 2020, 43, 939-950.	8.6	61
8	Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 2020, 582, 84-88.	27.8	634
9	Decomposing Parietal Memory Reactivation to Predict Consequences of Remembering. Cerebral Cortex, 2019, 29, 3305-3318.	2.9	45
10	Decoding the tradeoff between encoding and retrieval to predict memory for overlapping events. Neurolmage, 2019, 201, 116001.	4.2	18
11	Interference between overlapping memories is predicted by neural states during learning. Nature Communications, 2019, 10, 5363.	12.8	24
12	Long-term spatial memory representations in human visual cortex. Journal of Vision, 2019, 19, 291c.	0.3	0
13	Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks. Journal of Neuroscience, 2018, 38, 2495-2504.	3.6	52
14	Parietal Representations of Stimulus Features Are Amplified during Memory Retrieval and Flexibly Aligned with Top-Down Goals. Journal of Neuroscience, 2018, 38, 7809-7821.	3.6	63
15	Lower Parietal Encoding Activation Is Associated with Sharper Information and Better Memory. Cerebral Cortex, 2017, 27, bhw097.	2.9	32
16	Overlap among Spatial Memories Triggers Repulsion of Hippocampal Representations. Current Biology, 2017, 27, 2307-2317.e5.	3.9	125
17	Sampling memory to make profitable choices. Nature Neuroscience, 2017, 20, 903-904.	14.8	0
18	Experience-dependent hippocampal pattern differentiation prevents interference during subsequent learning. Nature Communications, 2016, 7, 11066.	12.8	124

BRICE A KUHL

#	Article	lF	CITATIONS
19	Hippocampal Mismatch Signals Are Modulated by the Strength of Neural Predictions and Their Similarity to Outcomes. Journal of Neuroscience, 2016, 36, 12677-12687.	3.6	55
20	Reconstructing Perceived and Retrieved Faces from Activity Patterns in Lateral Parietal Cortex. Journal of Neuroscience, 2016, 36, 6069-6082.	3.6	75
21	Predicting the integration of overlapping memories by decoding mnemonic processing states during learning. Neurolmage, 2016, 124, 323-335.	4.2	82
22	Successful Remembering Elicits Event-Specific Activity Patterns in Lateral Parietal Cortex. Journal of Neuroscience, 2014, 34, 8051-8060.	3.6	200
23	Stimulating memory consolidation. Nature Neuroscience, 2014, 17, 151-152.	14.8	5
24	Neural portraits of perception: Reconstructing face images from evoked brain activity. NeuroImage, 2014, 94, 12-22.	4.2	96
25	Repetition Suppression and Multi-Voxel Pattern Similarity Differentially Track Implicit and Explicit Visual Memory. Journal of Neuroscience, 2013, 33, 14749-14757.	3.6	98
26	Dissociable Neural Mechanisms for Goal-Directed Versus Incidental Memory Reactivation. Journal of Neuroscience, 2013, 33, 16099-16109.	3.6	67
27	Neural Reactivation Reveals Mechanisms for Updating Memory. Journal of Neuroscience, 2012, 32, 3453-3461.	3.6	87
28	Attending to the Present When Remembering the Past. Neuron, 2012, 75, 944-947.	8.1	3
29	Multi-voxel patterns of visual category representation during episodic encoding are predictive of subsequent memory. Neuropsychologia, 2012, 50, 458-469.	1.6	100
30	Intentional suppression of unwanted memories grows more difficult as we age Psychology and Aging, 2011, 26, 397-405.	1.6	99
31	More is not always better: paradoxical effects of repetition on semantic accessibility. Psychonomic Bulletin and Review, 2011, 18, 964-972.	2.8	15
32	Fidelity of neural reactivation reveals competition between memories. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5903-5908.	7.1	165
33	Resistance to forgetting associated with hippocampus-mediated reactivation during new learning. Nature Neuroscience, 2010, 13, 501-506.	14.8	202
34	Overcoming suppression in order to remember: Contributions from anterior cingulate and ventrolateral prefrontal cortex. Cognitive, Affective and Behavioral Neuroscience, 2008, 8, 211-221.	2.0	40
35	Decreased demands on cognitive control reveal the neural processing benefits of forgetting. Nature Neuroscience, 2007, 10, 908-914.	14.8	232
36	Neural Systems Underlying the Suppression of Unwanted Memories. Science, 2004, 303, 232-235.	12.6	964