Maryam Salami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1098528/publications.pdf

Version: 2024-02-01

55 papers	2,181 citations	26 h-index	233421 45 g-index
56	56	56	1965 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Synergistic Effect of Metagenomeâ€Derived Starchâ€Degrading Enzymes on Quality of Functional Bread with Antioxidant Activity. Starch/Staerke, 2022, 74, 2100098.	2.1	8
2	Investigation of S.limacinum microalgae digestibility and production of antioxidant bioactive peptides. LWT - Food Science and Technology, 2022, 154, 112468.	5.2	23
3	In vitro bioprocessing of corn as poultry feed additive by the influence of carbohydrate hydrolyzing metagenome derived enzyme cocktail. Scientific Reports, 2022, 12, 405.	3.3	6
4	Encapsulation of propolis extract in whey protein nanoparticles. LWT - Food Science and Technology, 2022, 158, 113138.	5.2	16
5	Investigating the effects of maltodextrin, gum arabic, and whey protein concentrate on the microencapsulation efficiency and oxidation stability of hemp seed oil. Journal of Food Processing and Preservation, 2022, 46, .	2.0	10
6	The novel homologue of the human αâ€glucosidase inhibited by the nonâ€germinated and germinated quinoa protein hydrolysates after in vitro gastrointestinal digestion. Journal of Food Biochemistry, 2022, 46, e14030.	2.9	7
7	Production and characterization of functional bakery goods enriched with bioactive peptides obtained from enzymatic hydrolysis of lentil protein. Journal of Food Measurement and Characterization, 2022, 16, 3402-3409.	3.2	1
8	Electrospray Production of Curcumin-walnut Protein Nanoparticles. Food Biophysics, 2021, 16, 15-26.	3.0	35
9	Mechanical, physical, and bio-functional properties of biopolymer films based on gelatin as affected by enriching with orange peel powder. Polymer Bulletin, 2021, 78, 4387-4402.	3.3	16
10	Mung bean protein as a promising biopolymeric vehicle for loading of curcumin: Structural characterization, antioxidant properties, and in vitro release kinetics. Journal of Drug Delivery Science and Technology, 2021, 61, 102148.	3.0	22
11	Spices as Traditional Remedies: Scientifically Proven Benefits. University of Tehran Science and Humanities Series, 2021, , 91-114.	0.1	3
12	Development and characterization of pH-sensitive and antioxidant edible films based on mung bean protein enriched with Echium amoenumâanthocyanins. Journal of Food Measurement and Characterization, 2021, 15, 2984-2994.	3.2	25
13	Biophysical, Rheological, and Functional Properties of Complex of Sodium Caseinate and Olive Leaf Aqueous Polyphenolic Extract Obtained Using Ultrasound-Assisted Extraction. Food Biophysics, 2021, 16, 325-336.	3.0	13
14	Improving the quality of gluten-free bread by a novel acidic thermostable α-amylase from metagenomics data. Food Chemistry, 2021, 352, 129307.	8.2	26
15	Nutraceuticals and Superfoods. University of Tehran Science and Humanities Series, 2021, , 75-89.	0.1	О
16	Walnut protein–curcumin complexes: fabrication, structural characterization, antioxidant properties, and in vitro anticancer activity. Journal of Food Measurement and Characterization, 2020, 14, 876-885.	3.2	33
17	UV-irradiated gelatin-chitosan bio-based composite film, physiochemical features and release properties for packaging applications. International Journal of Biological Macromolecules, 2020, 147, 990-996.	7. 5	19
18	A novel metagenome-derived thermostable and poultry feed compatible α-amylase with enhanced biodegradation properties. International Journal of Biological Macromolecules, 2020, 164, 2124-2133.	7.5	24

#	Article	IF	CITATIONS
19	A tailored nanostructure design to protect camel casein-curcumin complex against the upper gastrointestinal tract hydrolysis using aggregated whey proteins in order to increase its antioxidant activity. International Journal of Food Properties, 2020, 23, 1874-1885.	3.0	4
20	Development of antioxidant edible films based on mung bean protein enriched with pomegranate peel. Food Hydrocolloids, 2020, 104, 105735.	10.7	183
21	Nanostructured food proteins as efficient systems for the encapsulation of bioactive compounds. Food Science and Human Wellness, 2020, 9, 199-213.	4.9	70
22	Effect of microbial transglutaminase on the mechanical properties and microstructure of acid-induced gels and emulsion gels produced from thermal denatured egg white proteins. International Journal of Biological Macromolecules, 2020, 153, 523-532.	7.5	54
23	A pH-sensitive delivery system based on N-succinyl chitosan-ZnO nanoparticles for improving antibacterial and anticancer activities of curcumin. International Journal of Biological Macromolecules, 2020, 151, 428-440.	7. 5	83
24	Whey protein aggregates formed by non-toxic chemical cross-linking as novel carriers for curcumin delivery: Fabrication and characterization. Journal of Drug Delivery Science and Technology, 2020, 56, 101531.	3.0	20
25	Physicochemical and bio-functional properties of walnut proteins as affected by trypsin-mediated hydrolysis. Food Bioscience, 2020, 36, 100611.	4.4	49
26	Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the pH-driven method. Food Hydrocolloids, 2020, 108, 106026.	10.7	56
27	Microwave-assisted extraction of hempseed oil: studying and comparing of fatty acid composition, antioxidant activity, physiochemical and thermal properties with Soxhlet extraction. Journal of Food Science and Technology, 2019, 56, 4198-4210.	2.8	51
28	Characterization of hydrogels formed by non-toxic chemical cross-linking of mixed nanofibrillated/heat-denatured whey proteins. Journal of the Iranian Chemical Society, 2019, 16, 2731-2741.	2.2	8
29	Complexation of curcumin with whey protein isolate for enhancing its aqueous solubility through a solventâ€free pHâ€driven approach. Journal of Food Processing and Preservation, 2019, 43, e14227.	2.0	27
30	Effect of different parameters on orange oil nanoemulsion particle size: combination of low energy and high energy methods. Journal of Food Measurement and Characterization, 2019, 13, 2501-2509.	3.2	28
31	Fabrication and Characterization of Curcumin-Loaded Complex Coacervates Made of Gum Arabic and Whey Protein Nanofibrils. Food Biophysics, 2019, 14, 425-436.	3.0	31
32	Effect of free radical-induced aggregation on physicochemical and interface-related functionality of egg white protein. Food Hydrocolloids, 2019, 87, 734-746.	10.7	63
33	Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils. Food Hydrocolloids, 2019, 87, 902-914.	10.7	183
34	Fabrication of curcumin-loaded whey protein microgels: Structural properties, antioxidant activity, and in vitro release behavior. LWT - Food Science and Technology, 2019, 103, 94-100.	5.2	71
35	The techno-functional properties of camel whey protein compared to bovine whey protein for fabrication a model high protein emulsion. LWT - Food Science and Technology, 2019, 101, 543-550.	5.2	26
36	The impact of slaughtering methods on physicochemical characterization of sheep myoglobin. Journal of the Iranian Chemical Society, 2019, 16, 315-324.	2.2	4

3

#	Article	IF	CITATIONS
37	Influence of seeding and stirring on the structural properties and formation yield of whey protein microgels. International Dairy Journal, 2018, 79, 43-51.	3.0	8
38	Effect of organic additives on physiochemical properties and anti-oxidant release from chitosan-gelatin composite films to fatty food simulant. International Journal of Biological Macromolecules, 2018, 114, 844-850.	7.5	51
39	Radical cross-linked whey protein aggregates as building blocks of non-heated cold-set gels. Food Hydrocolloids, 2018, 81, 429-441.	10.7	42
40	Kinetics Study of Protein Hydrolysis and Inhibition of Angiotensin Converting Enzyme by Peptides Hydrolysate Extracted from Walnut. International Journal of Peptide Research and Therapeutics, 2018, 24, 77-85.	1.9	20
41	Optimisation of experimental conditions for binding of divalent iron to bioactive casein phosphopeptides. International Journal of Food Science and Technology, 2018, 53, 784-793.	2.7	18
42	Investigation on the extraction yield, quality, and thermal properties of hempseed oil during ultrasoundâ€assisted extraction: A comparative study. Journal of Food Processing and Preservation, 2018, 42, e13766.	2.0	31
43	Effect of casein and inulin addition on physico-chemical characteristics of low fat camel dairy cream. International Journal of Biological Macromolecules, 2018, 117, 858-862.	7.5	11
44	Effect of dry heating on physico-chemical, functional properties and digestibility of camel whey protein. International Dairy Journal, 2018, 86, 9-20.	3.0	17
45	Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: Impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocolloids, 2018, 85, 267-280.	10.7	124
46	Gelation of oil-in-water emulsions stabilized by heat-denatured and nanofibrillated whey proteins through ion bridging or citric acid-mediated cross-linking. International Journal of Biological Macromolecules, 2018, 120, 2247-2258.	7.5	39
47	Functional and in vitro gastric digestibility of the whey protein hydrogel loaded with nanostructured lipid carriers and gelled via citric acid-mediated crosslinking. Food Chemistry, 2017, 237, 23-29.	8.2	36
48	Calcium and chitosan-mediated clustering of whey protein particles for tuning their colloidal stability and flow behaviour. International Dairy Journal, 2017, 73, 136-143.	3.0	10
49	ACE- inhibitory and radical scavenging activities of bioactive peptides obtained from camel milk casein hydrolysis with proteinase K. Dairy Science and Technology, 2016, 96, 489-499.	2.2	36
50	Antioxidant and Anticancer Activities of Walnut (Juglans regia L.) Protein Hydrolysates Using Different Proteases. Plant Foods for Human Nutrition, 2016, 71, 402-409.	3.2	105
51	Natural peptide anti-glycation effect in the presence of Aloe vera phenolic components on human serum albumin. RSC Advances, 2015, 5, 248-254.	3.6	12
52	Deconvolution and binding study of camel and human serum albumins upon interaction with sodium dodecyl sulphate. Journal of the Iranian Chemical Society, 2014, 11, 1449-1457.	2.2	2
53	Biological activity of camel milk casein following enzymatic digestion. Journal of Dairy Research, 2011, 78, 471-478.	1.4	120
54	Improvement of the Antimicrobial and Antioxidant Activities of Camel and Bovine Whey Proteins by Limited Proteolysis Journal of Agricultural and Food Chemistry, 2010, 58, 3297-3302.	5.2	122

#	Article	IF	CITATIONS
55	Kinetic characterization of hydrolysis of camel and bovine milk proteins by pancreatic enzymes. International Dairy Journal, 2008, 18, 1097-1102.	3.0	79