Ying Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10984804/publications.pdf Version: 2024-02-01

VINC VANC

#	Article	IF	CITATIONS
1	Nitric oxide producing coating mimicking endothelium function for multifunctional vascular stents. Biomaterials, 2015, 63, 80-92.	5.7	162
2	Mussel-Inspired One-Step Adherent Coating Rich in Amine Groups for Covalent Immobilization of Heparin: Hemocompatibility, Growth Behaviors of Vascular Cells, and Tissue Response. ACS Applied Materials & Interfaces, 2014, 6, 14608-14620.	4.0	115
3	A biocompatible and functional adhesive amine-rich coating based on dopamine polymerization. Journal of Materials Chemistry B, 2015, 3, 72-81.	2.9	112
4	Biomimetic engineering endothelium-like coating on cardiovascular stent through heparin and nitric oxide-generating compound synergistic modification strategy. Biomaterials, 2019, 207, 10-22.	5.7	106
5	Mussel-inspired catalytic selenocystamine-dopamine coatings for long-term generation of therapeutic gas on cardiovascular stents. Biomaterials, 2018, 178, 1-10.	5.7	99
6	Endothelium-Mimicking Multifunctional Coating Modified Cardiovascular Stents via a Stepwise Metal-Catechol-(Amine) Surface Engineering Strategy. Research, 2020, 2020, 9203906.	2.8	81
7	Metal-Phenolic Surfaces for Generating Therapeutic Nitric Oxide Gas. Chemistry of Materials, 2018, 30, 5220-5226.	3.2	64
8	Polydopamine Modified TiO ₂ Nanotube Arrays for Long-Term Controlled Elution of Bivalirudin and Improved Hemocompatibility. ACS Applied Materials & Interfaces, 2018, 10, 7649-7660.	4.0	52
9	Synergetic coordination and catecholamine chemistry for catalytic generation of nitric oxide on vascular stents. NPG Asia Materials, 2018, 10, 482-496.	3.8	50
10	Gallic Acid Tailoring Surface Functionalities of Plasma-Polymerized Allylamine-Coated 316L SS to Selectively Direct Vascular Endothelial and Smooth Muscle Cell Fate for Enhanced Endothelialization. ACS Applied Materials & Interfaces, 2014, 6, 2647-2656.	4.0	44
11	Immobilization of DNA aptamers via plasma polymerized allylamine film to construct an endothelial progenitor cell-capture surface. Colloids and Surfaces B: Biointerfaces, 2015, 126, 70-79.	2.5	42
12	Polydopamine-mediated long-term elution of the direct thrombin inhibitor bivalirudin from TiO ₂ nanotubes for improved vascular biocompatibility. Journal of Materials Chemistry B, 2014, 2, 6767-6778.	2.9	34
13	Improvement of corrosion resistance and biocompatibility of biodegradable metallic vascular stent via plasma allylamine polymerized coating. Materials and Design, 2016, 96, 341-349.	3.3	28
14	Facile immobilization of vascular endothelial growth factor on a tannic acid-functionalized plasma-polymerized allylamine coating rich in quinone groups. RSC Advances, 2016, 6, 17188-17195.	1.7	23
15	The effects of TiO ₂ nanotube arrays with different diameters on macrophage/endothelial cell response and <i>ex vivo</i> hemocompatibility. Journal of Materials Chemistry B, 2018, 6, 6322-6333.	2.9	23
16	Construction of Polyfunctional Coatings Assisted by Gallic Acid to Facilitate Co-Immobilization of Diverse Biomolecules. ACS Applied Materials & amp; Interfaces, 2013, 5, 10495-10501.	4.0	22
17	Biomaterials Regulating Bone Hematoma for Osteogenesis. Advanced Healthcare Materials, 2020, 9, e2000726.	3.9	22
18	Endogenous nitric oxide-generating surfaces via polydopamine-copper coatings for preventing biofilm dispersal and promoting microbial killing. Materials Science and Engineering C, 2021, 128, 112297.	3.8	20

YING YANG

#	Article	IF	CITATIONS
19	Current status of research and application in vascular stents. Science Bulletin, 2013, 58, 4362-4370.	1.7	17
20	Dose controlled nitric oxide-based strategies for antibacterial property in biomedical devices. Applied Materials Today, 2020, 19, 100562.	2.3	17
21	Multifunctional Plasma-Polymerized Film: Toward Better Anticorrosion Property, Enhanced Cellular Growth Ability, and Attenuated Inflammatory and Histological Responses. ACS Biomaterials Science and Engineering, 2015, 1, 513-524.	2.6	13
22	Development of nitric oxide catalytic coatings by conjugating 3,3-disulfodipropionic acid and 3,3-diselenodipropionic acid for improving hemocompatibility. Biointerphases, 2015, 10, 04A303.	0.6	9
23	Constructing Biomimic Catalytic Coating with Controlled Nitric Oxide Release Properties by Immobilizing 3,3-Diselenodipropionic Acid on Plasma Polymerized Allylamine Film. Plasma Processes and Polymers, 2014, 11, 952-960.	1.6	8
24	Development of the Nude Rabbit Model. Stem Cell Reports, 2021, 16, 656-665.	2.3	7
25	Nitric Oxide generating coating alters hematoma structure and soft tissue healing. Applied Materials	2.3	2