Josep M Guerrero

List of Publications by Citations

Source: https://exaly.com/author-pdf/10984463/josep-m-guerrero-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

178 783 40,194 94 h-index g-index citations papers 810 8.32 52,290 5.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
783	. IEEE Transactions on Industrial Electronics, 2011 , 58, 158-172	8.9	2688
782	. IEEE Transactions on Industrial Electronics, 2013 , 60, 1254-1262	8.9	1142
781	A Review of the State of the Art of Power Electronics for Wind Turbines. <i>IEEE Transactions on Power Electronics</i> , 2009 , 24, 1859-1875	7.2	851
780	Decentralized Control for Parallel Operation of Distributed Generation Inverters Using Resistive Output Impedance. <i>IEEE Transactions on Industrial Electronics</i> , 2007 , 54, 994-1004	8.9	690
779	Distributed Secondary Control for Islanded Microgrids Novel Approach. <i>IEEE Transactions on Power Electronics</i> , 2014 , 29, 1018-1031	7.2	641
778	. IEEE Transactions on Power Electronics, 2016 , 31, 3528-3549	7.2	605
777	An Improved Droop Control Method for DC Microgrids Based on Low Bandwidth Communication With DC Bus Voltage Restoration and Enhanced Current Sharing Accuracy. <i>IEEE Transactions on Power Electronics</i> , 2014 , 29, 1800-1812	7.2	582
776	Advanced Control Architectures for Intelligent Microgrids Part II: Power Quality, Energy Storage, and AC/DC Microgrids. <i>IEEE Transactions on Industrial Electronics</i> , 2013 , 60, 1263-1270	8.9	551
775	. IEEE Transactions on Industrial Electronics, 2015 , 62, 7025-7038	8.9	518
774	Control Strategy for Flexible Microgrid Based on Parallel Line-Interactive UPS Systems. <i>IEEE Transactions on Industrial Electronics</i> , 2009 , 56, 726-736	8.9	513
773	Design and Analysis of the Droop Control Method for Parallel Inverters Considering the Impact of the Complex Impedance on the Power Sharing. <i>IEEE Transactions on Industrial Electronics</i> , 2011 , 58, 576-	-588	507
772	. IEEE Transactions on Smart Grid, 2016 , 7, 200-215	10.7	496
771	Supervisory Control of an Adaptive-Droop Regulated DC Microgrid With Battery Management Capability. <i>IEEE Transactions on Power Electronics</i> , 2014 , 29, 695-706	7.2	477
770	. IEEE Transactions on Power Systems, 2013 , 28, 3462-3470	7	473
769	. IEEE Transactions on Industrial Electronics, 2014 , 61, 2804-2815	8.9	430
768	Control of Distributed Uninterruptible Power Supply Systems. <i>IEEE Transactions on Industrial Electronics</i> , 2008 , 55, 2845-2859	8.9	419
767	. IEEE Transactions on Industrial Electronics, 2013 , 60, 1271-1280	8.9	401

(2013-2009)

766	Adaptive Droop Control Applied to Voltage-Source Inverters Operating in Grid-Connected and Islanded Modes. <i>IEEE Transactions on Industrial Electronics</i> , 2009 , 56, 4088-4096	8.9	370
765	. IEEE Transactions on Power Electronics, 2017 , 32, 1894-1907	7.2	364
764	. IEEE Transactions on Power Electronics, 2017 , 32, 2427-2451	7.2	364
763	Mode Adaptive Droop Control With Virtual Output Impedances for an Inverter-Based Flexible AC Microgrid. <i>IEEE Transactions on Power Electronics</i> , 2011 , 26, 689-701	7.2	339
762	An Islanding Microgrid Power Sharing Approach Using Enhanced Virtual Impedance Control Scheme. <i>IEEE Transactions on Power Electronics</i> , 2013 , 28, 5272-5282	7.2	322
761	. IEEE Transactions on Smart Grid, 2012 , 3, 797-807	10.7	321
760	. IEEE Transactions on Power Electronics, 2014 , 29, 2750-2763	7.2	318
759	. IEEE Transactions on Industrial Electronics, 2013 , 60, 5458-5471	8.9	292
758	Distributed Generation: Toward a New Energy Paradigm. <i>IEEE Industrial Electronics Magazine</i> , 2010 , 4, 52-64	6.2	279
757	Hierarchical Control of Intelligent Microgrids. <i>IEEE Industrial Electronics Magazine</i> , 2010 , 4, 23-29	6.2	275
756	. IEEE Transactions on Smart Grid, 2015 , 6, 3006-3019	10.7	265
755	. IEEE Transactions on Energy Conversion, 2014 , 29, 944-956	5.4	263
754	. IEEE Transactions on Smart Grid, 2012 , 3, 1893-1902	10.7	253
753	. IEEE Transactions on Smart Grid, 2014 , 5, 683-692	10.7	252
752	. IEEE Transactions on Energy Conversion, 2014 , 29, 922-933	5.4	235
751	Optimal Power Flow in Microgrids With Energy Storage. <i>IEEE Transactions on Power Systems</i> , 2013 , 28, 3226-3234	7	230
750	Autonomous Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid. <i>IEEE Transactions on Industrial Electronics</i> , 2013 , 60, 1390-1402	8.9	222
749	Dynamics Assessment of Advanced Single-Phase PLL Structures. <i>IEEE Transactions on Industrial Electronics</i> , 2013 , 60, 2167-2177	8.9	220

748	Voltage Support Provided by a Droop-Controlled Multifunctional Inverter. <i>IEEE Transactions on Industrial Electronics</i> , 2009 , 56, 4510-4519	8.9	215
747	Computational optimization techniques applied to microgrids planning: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 48, 413-424	16.2	212
746	Microgrid supervisory controllers and energy management systems: A literature review. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 60, 1263-1273	16.2	211
745	A survey on control of electric power distributed generation systems for microgrid applications. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 44, 751-766	16.2	207
744	Microgrids: Experiences, barriers and success factors. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 40, 659-672	16.2	203
743	Double-Quadrant State-of-Charge-Based Droop Control Method for Distributed Energy Storage Systems in Autonomous DC Microgrids. <i>IEEE Transactions on Smart Grid</i> , 2015 , 6, 147-157	10.7	198
742	. IEEE Transactions on Power Electronics, 2016 , 31, 3932-3944	7.2	196
741	Microgrids in active network managementPart I: Hierarchical control, energy storage, virtual power plants, and market participation. <i>Renewable and Sustainable Energy Reviews</i> , 2014 , 36, 428-439	16.2	195
740	. IEEE Transactions on Smart Grid, 2016 , 7, 1430-1441	10.7	188
739	. IEEE Transactions on Power Electronics, 2016 , 31, 1600-1617	7.2	187
738	. IEEE Transactions on Smart Grid, 2014 , 5, 2476-2485	10.7	185
737	. IEEE Transactions on Smart Grid, 2015 , 6, 2770-2783	10.7	176
736	Next-Generation Shipboard DC Power System: Introduction Smart Grid and dc Microgrid Technologies into Maritime Electrical Netowrks. <i>IEEE Electrification Magazine</i> , 2016 , 4, 45-57	2.6	176
735	Single-Phase PLLs: A Review of Recent Advances. <i>IEEE Transactions on Power Electronics</i> , 2017 , 32, 9013	3- <u>9.0</u> 30	174
734	. IEEE Transactions on Industrial Informatics, 2017 , 13, 448-460	11.9	173
733	. IEEE Transactions on Power Electronics, 2015 , 30, 3133-3141	7.2	172
732	Autonomous Active Power Control for Islanded AC Microgrids With Photovoltaic Generation and Energy Storage System. <i>IEEE Transactions on Energy Conversion</i> , 2014 , 29, 882-892	5.4	172
731	Control Design Guidelines for Single-Phase Grid-Connected Photovoltaic Inverters With Damped		

(2016-2018)

730	. IEEE Transactions on Power Electronics, 2018, 33, 6488-6508	7.2	171
729	Robust Networked Control Scheme for Distributed Secondary Control of Islanded Microgrids. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 5363-5374	8.9	168
728	Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies. <i>IEEE Industrial Electronics Magazine</i> , 2013 , 7, 42-55	6.2	161
727	A multi-agent based energy management solution for integrated buildings and microgrid system. <i>Applied Energy</i> , 2017 , 203, 41-56	10.7	161
726	dq-Frame Cascaded Delayed Signal Cancellation- Based PLL: Analysis, Design, and Comparison With Moving Average Filter-Based PLL. <i>IEEE Transactions on Power Electronics</i> , 2015 , 30, 1618-1632	7.2	159
725	Distributed Control of Battery Energy Storage Systems for Voltage Regulation in Distribution Networks With High PV Penetration. <i>IEEE Transactions on Smart Grid</i> , 2018 , 9, 3582-3593	10.7	158
724	. IEEE Transactions on Power Electronics, 2017 , 32, 2769-2783	7.2	156
723	Reactive Power Sharing and Voltage Harmonic Distortion Compensation of Droop Controlled Single Phase Islanded Microgrids. <i>IEEE Transactions on Smart Grid</i> , 2014 , 5, 1149-1158	10.7	156
722	Review on Control of DC Microgrids and Multiple Microgrid Clusters. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2017 , 1-1	5.6	154
721	Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations. <i>Renewable Energy</i> , 2018 , 126, 95-106	8.1	153
721 720		8.1	153 148
	independent and coalition operations. <i>Renewable Energy</i> , 2018 , 126, 95-106		
720	independent and coalition operations. <i>Renewable Energy</i> , 2018 , 126, 95-106 . <i>IEEE Systems Journal</i> , 2017 , 11, 1712-1722 Dynamic Phasors-Based Modeling and Stability Analysis of Droop-Controlled Inverters for	4.3	148
720 719	independent and coalition operations. <i>Renewable Energy</i> , 2018 , 126, 95-106 . <i>IEEE Systems Journal</i> , 2017 , 11, 1712-1722 Dynamic Phasors-Based Modeling and Stability Analysis of Droop-Controlled Inverters for Microgrid Applications. <i>IEEE Transactions on Smart Grid</i> , 2014 , 5, 2980-2987 Analysis, Design, and Experimental Verification of a Synchronous Reference Frame Voltage Control	4.3	148
720 719 718	independent and coalition operations. <i>Renewable Energy</i> , 2018 , 126, 95-106 . <i>IEEE Systems Journal</i> , 2017 , 11, 1712-1722 Dynamic Phasors-Based Modeling and Stability Analysis of Droop-Controlled Inverters for Microgrid Applications. <i>IEEE Transactions on Smart Grid</i> , 2014 , 5, 2980-2987 Analysis, Design, and Experimental Verification of a Synchronous Reference Frame Voltage Control for Single-Phase Inverters. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 258-269	4·3 10.7 8.9	148 147 145
720 719 718 717	independent and coalition operations. Renewable Energy, 2018, 126, 95-106 . IEEE Systems Journal, 2017, 11, 1712-1722 Dynamic Phasors-Based Modeling and Stability Analysis of Droop-Controlled Inverters for Microgrid Applications. IEEE Transactions on Smart Grid, 2014, 5, 2980-2987 Analysis, Design, and Experimental Verification of a Synchronous Reference Frame Voltage Control for Single-Phase Inverters. IEEE Transactions on Industrial Electronics, 2014, 61, 258-269 . IEEE Transactions on Smart Grid, 2015, 6, 1156-1166	4·3 10.7 8.9	148 147 145 142
720 719 718 717 716	independent and coalition operations. Renewable Energy, 2018, 126, 95-106 . IEEE Systems Journal, 2017, 11, 1712-1722 Dynamic Phasors-Based Modeling and Stability Analysis of Droop-Controlled Inverters for Microgrid Applications. IEEE Transactions on Smart Grid, 2014, 5, 2980-2987 Analysis, Design, and Experimental Verification of a Synchronous Reference Frame Voltage Control for Single-Phase Inverters. IEEE Transactions on Industrial Electronics, 2014, 61, 258-269 . IEEE Transactions on Smart Grid, 2015, 6, 1156-1166 . IEEE Transactions on Industrial Electronics, 2017, 64, 5741-5745	4.3 10.7 8.9 10.7 8.9	148 147 145 142 139

712	. IEEE Transactions on Smart Grid, 2017 , 8, 557-571	10.7	120
711	A Novel Distributed Secondary Coordination Control Approach for Islanded Microgrids. <i>IEEE Transactions on Smart Grid</i> , 2018 , 9, 2726-2740	10.7	120
710	Feedback Linearization of a Single-Phase Active Power Filter via Sliding Mode Control. <i>IEEE Transactions on Power Electronics</i> , 2008 , 23, 116-125	7.2	118
709	Selective Harmonic-Compensation Control for Single-Phase Active Power Filter With High Harmonic Rejection. <i>IEEE Transactions on Industrial Electronics</i> , 2009 , 56, 3117-3127	8.9	117
708	. IEEE Transactions on Energy Conversion, 2016 , 31, 1037-1050	5.4	117
707	A Distributed Control Strategy for Coordination of an Autonomous LVDC Microgrid Based on Power-Line Signaling. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 3313-3326	8.9	116
706	A Virtual Inertia Control Strategy for DC Microgrids Analogized With Virtual Synchronous Machines. <i>IEEE Transactions on Industrial Electronics</i> , 2017 , 64, 6005-6016	8.9	114
705	. IEEE Transactions on Power Electronics, 2016 , 31, 827-838	7.2	113
704	. IEEE Transactions on Power Electronics, 2017 , 32, 5202-5213	7.2	113
703	. IEEE Transactions on Smart Grid, 2015 , 6, 2627-2638	10.7	112
702	Intelligent DC Homes in Future Sustainable Energy Systems: When efficiency and intelligence work together. <i>IEEE Consumer Electronics Magazine</i> , 2016 , 5, 74-80	3.2	110
701	Linear Current Control Scheme With Series Resonant Harmonic Compensator for Single-Phase Grid-Connected Photovoltaic Inverters. <i>IEEE Transactions on Industrial Electronics</i> , 2008 , 55, 2724-2733	8.9	110
700	Line-Interactive UPS for Microgrids. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 1292-1300	8.9	109
699	. IEEE Transactions on Energy Conversion, 2016 , 31, 637-648	5.4	104
698	. IEEE Access, 2020 , 8, 19410-19432	3.5	101
69 7	. IEEE Transactions on Power Electronics, 2015 , 30, 5964-5977	7.2	99
696	PLL With MAF-Based Prefiltering Stage: Small-Signal Modeling and Performance Enhancement. <i>IEEE Transactions on Power Electronics</i> , 2016 , 31, 4013-4019	7.2	97
695	Virtual Flux Droop Method New Control Strategy of Inverters in Microgrids. <i>IEEE Transactions on Power Electronics</i> , 2014 , 29, 4704-4711	7.2	97

694	. IEEE Transactions on Power Electronics, 2018, 33, 6416-6433	7.2	96
693	. IEEE Transactions on Industrial Informatics, 2018 , 14, 703-714	11.9	95
692	. IEEE Electrification Magazine, 2016 , 4, 20-28	2.6	95
691	Uninterruptible power supply systems provide protection. <i>IEEE Industrial Electronics Magazine</i> , 2007 , 1, 28-38	6.2	95
690	. IEEE Transactions on Smart Grid, 2017 , 8, 2370-2381	10.7	94
689	. IEEE Transactions on Smart Grid, 2017 , 8, 2754-2764	10.7	94
688	Flexible Control Strategy for Grid-Connected Inverter Under Unbalanced Grid Faults Without PLL. <i>IEEE Transactions on Power Electronics</i> , 2015 , 30, 1773-1778	7.2	94
687	Distributed Noise-Resilient Secondary Voltage and Frequency Control for Islanded Microgrids. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 3780-3790	10.7	94
686	. IEEE Transactions on Power Delivery, 2012 , 27, 2318-2325	4.3	94
685	A Review of Power Electronics Based Microgrids. <i>Journal of Power Electronics</i> , 2012 , 12, 181-192	0.9	93
684	. IEEE Transactions on Power Electronics, 2016 , 31, 1085-1094	7.2	92
683	. IEEE Transactions on Power Electronics, 2020 , 35, 6482-6500	7.2	92
682	. IEEE Transactions on Smart Grid, 2017 , 8, 2138-2148	10.7	90
681	Performance Improvement of a Prefiltered Synchronous-Reference-Frame PLL by Using a PID-Type Loop Filter. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 3469-3479	8.9	90
680	. IEEE Transactions on Smart Grid, 2015 , 6, 1631-1638	10.7	90
679	. IEEE Transactions on Power Electronics, 2013 , 28, 4985-4997	7.2	90
678	. IEEE Transactions on Energy Conversion, 2016 , 31, 970-980	5.4	89
677	A Quasi-Type-1 Phase-Locked Loop Structure. <i>IEEE Transactions on Power Electronics</i> , 2014 , 29, 6264-62	7 , 0.2	88

676	A Consensus-Based Cooperative Control of PEV Battery and PV Active Power Curtailment for Voltage Regulation in Distribution Networks. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 670-680	10.7	88
675	Single-Phase Microgrid With Seamless Transition Capabilities Between Modes of Operation. <i>IEEE Transactions on Smart Grid</i> , 2015 , 6, 2736-2745	10.7	87
674	. IEEE Transactions on Industrial Electronics, 2015 , 62, 4344-4354	8.9	86
673	DC Microgrid Protection: A Comprehensive Review. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2019 , 1-1	5.6	84
672	Model Predictive Control of Bidirectional DCDC Converters and AC/DC Interlinking Converters New Control Method for PV-Wind-Battery Microgrids. <i>IEEE Transactions on Sustainable Energy</i> , 2019 , 10, 1823-1833	8.2	84
671	Modeling, Tuning, and Performance Comparison of Second-Order-Generalized-Integrator-Based FLLs. <i>IEEE Transactions on Power Electronics</i> , 2018 , 33, 10229-10239	7.2	83
670	. IEEE Transactions on Industrial Informatics, 2018, 14, 3870-3880	11.9	83
669	. IEEE Transactions on Industry Applications, 2017 , 53, 2369-2381	4.3	82
668	. IEEE Transactions on Smart Grid, 2015 , 6, 2615-2626	10.7	82
667	. IEEE Transactions on Power Electronics, 2016 , 31, 648-661	7.2	82
666	. IEEE Transactions on Smart Grid, 2018 , 9, 3247-3258	10.7	81
		10.7	
665	Efficient energy management for a grid-tied residential microgrid. <i>IET Generation, Transmission and Distribution</i> , 2017 , 11, 2752-2761	2.5	80
665		,	8o 8o
Í	Distribution, 2017 , 11, 2752-2761	2.5	
664	Distribution, 2017, 11, 2752-2761 . IEEE Transactions on Industrial Informatics, 2018, 14, 3956-3969	2.5	80 80
664	Distribution, 2017, 11, 2752-2761 . IEEE Transactions on Industrial Informatics, 2018, 14, 3956-3969 . IEEE Transactions on Industry Applications, 2016, 52, 4269-4280	2.5 11.9 4.3	80 80
664 663 662	Distribution, 2017, 11, 2752-2761 . IEEE Transactions on Industrial Informatics, 2018, 14, 3956-3969 . IEEE Transactions on Industry Applications, 2016, 52, 4269-4280 . IEEE Transactions on Smart Grid, 2016, 7, 1660-1674 Microgrids in active network management [part II: System operation, power quality and	2.5 11.9 4.3	80 80 79

(2008-2013)

658	. IEEE Transactions on Industrial Electronics, 2013 , 60, 3752-3765	8.9	78
657	Asymmetrical Grid Fault Ride-Through Strategy of Three-Phase Grid-Connected Inverter Considering Network Impedance Impact in Low-Voltage Grid. <i>IEEE Transactions on Power Electronics</i> , 2014 , 29, 1064-1068	7.2	77
656	Intelligent Connection Agent for Three-Phase Grid-Connected Microgrids. <i>IEEE Transactions on Power Electronics</i> , 2011 , 26, 2993-3005	7.2	75
655	A hierarchical energy management strategy for interconnected microgrids considering uncertainty. <i>International Journal of Electrical Power and Energy Systems</i> , 2019 , 109, 597-608	5.1	74
654	. IEEE Transactions on Industrial Electronics, 2015 , 62, 746-756	8.9	74
653	. IEEE Transactions on Power Electronics, 2016 , 31, 5974-5991	7.2	73
652	Decentralized Method for Load Sharing and Power Management in a PV/Battery Hybrid Source Islanded Microgrid. <i>IEEE Transactions on Power Electronics</i> , 2017 , 32, 3525-3535	7.2	72
651	Review on microgrids protection. <i>IET Generation, Transmission and Distribution</i> , 2019 , 13, 743-759	2.5	72
650	A model predictive control strategy of PV-Battery microgrid under variable power generations and load conditions. <i>Applied Energy</i> , 2018 , 221, 195-203	10.7	72
649	. IEEE Transactions on Energy Conversion, 2014 , 29, 802-815	5.4	72
649 648	. <i>IEEE Transactions on Energy Conversion</i> , 2014 , 29, 802-815 Improvement of Frequency Regulation in VSG-Based AC Microgrid Via Adaptive Virtual Inertia. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 1589-1602	5·4 7·2	72 72
	Improvement of Frequency Regulation in VSG-Based AC Microgrid Via Adaptive Virtual Inertia. <i>IEEE</i>		<u> </u>
648	Improvement of Frequency Regulation in VSG-Based AC Microgrid Via Adaptive Virtual Inertia. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 1589-1602 A coordinated control of hybrid ac/dc microgrids with PV-wind-battery under variable generation	7.2	<u> </u>
648	Improvement of Frequency Regulation in VSG-Based AC Microgrid Via Adaptive Virtual Inertia. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 1589-1602 A coordinated control of hybrid ac/dc microgrids with PV-wind-battery under variable generation and load conditions. <i>International Journal of Electrical Power and Energy Systems</i> , 2019 , 104, 583-592	7.2	72 70
648 647 646	Improvement of Frequency Regulation in VSG-Based AC Microgrid Via Adaptive Virtual Inertia. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 1589-1602 A coordinated control of hybrid ac/dc microgrids with PV-wind-battery under variable generation and load conditions. <i>International Journal of Electrical Power and Energy Systems</i> , 2019 , 104, 583-592 2009 , Blockchain for power systems: Current trends and future applications. <i>Renewable and Sustainable</i>	7.2	72 70 70
648 647 646	Improvement of Frequency Regulation in VSG-Based AC Microgrid Via Adaptive Virtual Inertia. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 1589-1602 A coordinated control of hybrid ac/dc microgrids with PV-wind-battery under variable generation and load conditions. <i>International Journal of Electrical Power and Energy Systems</i> , 2019 , 104, 583-592 2009 , Blockchain for power systems: Current trends and future applications. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 119, 109585	7.2 5.1	72 70 70 68
648 647 646 645	Improvement of Frequency Regulation in VSG-Based AC Microgrid Via Adaptive Virtual Inertia. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 1589-1602 A coordinated control of hybrid ac/dc microgrids with PV-wind-battery under variable generation and load conditions. <i>International Journal of Electrical Power and Energy Systems</i> , 2019 , 104, 583-592 2009 , Blockchain for power systems: Current trends and future applications. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 119, 109585 . <i>IEEE Transactions on Power Electronics</i> , 2016 , 31, 3517-3527	7.2 5.1 16.2	72 70 70 68 67

640	A Model Predictive Control for Renewable Energy Based AC Microgrids Without Any PID Regulators. <i>IEEE Transactions on Power Electronics</i> , 2018 , 33, 9122-9126	7.2	66
639	Containment and Consensus-Based Distributed Coordination Control to Achieve Bounded Voltage and Precise Reactive Power Sharing in Islanded AC Microgrids. <i>IEEE Transactions on Industry Applications</i> , 2017 , 53, 5187-5199	4.3	65
638	. IEEE Transactions on Smart Grid, 2015 , 6, 2757-2769	10.7	65
637	. IEEE Access, 2018 , 6, 77388-77401	3.5	65
636	Agent-Based Decentralized Control Method for Islanded Microgrids. <i>IEEE Transactions on Smart Grid</i> , 2015 , 1-1	10.7	64
635	Model predictive control of microgrids [An overview. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 136, 110422	16.2	64
634	. IEEE Transactions on Power Electronics, 2018, 33, 2201-2215	7.2	63
633	. IEEE Transactions on Power Electronics, 2019 , 34, 1773-1785	7.2	63
632	. IEEE Transactions on Power Electronics, 2017, 32, 3128-3142	7.2	62
631	. IEEE Transactions on Power Electronics, 2016 , 31, 4576-4593	7.2	61
630	Single-Phase Frequency-Locked Loops: A Comprehensive Review. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 11791-11812	7.2	61
629	Voltage Quality Improvement in Low Voltage Distribution Networks Using Reactive Power Capability of Single-Phase PV Inverters. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 5057-5065	10.7	61
628	Improved Direct Power Control for Grid-Connected Voltage Source Converters. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 8041-8051	8.9	60
627	Evaluation of reliability in risk-constrained scheduling of autonomous microgrids with demand response and renewable resources. <i>IET Renewable Power Generation</i> , 2018 , 12, 657-667	2.9	59
626	Single-Carrier Modulation for Neutral-Point-Clamped Inverters in Three-Phase Transformerless Photovoltaic Systems. <i>IEEE Transactions on Power Electronics</i> , 2013 , 28, 2635-2637	7.2	59
625	A cost-effective and emission-aware power management system for ships with integrated full electric propulsion. <i>Electric Power Systems Research</i> , 2017 , 150, 63-75	3.5	58
624	Energy and Frequency Hierarchical Management System Using Information Gap Decision Theory for Islanded Microgrids. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 7921-7932	8.9	58
623	Sequence-Impedance-Based Stability Comparison Between VSGs and Traditional Grid-Connected Inverters. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 46-52	7.2	58

(2018-2015)

622	Mitigation of Harmonics in Grid-Connected and Islanded Microgrids Via Virtual Admittances and Impedances. <i>IEEE Transactions on Smart Grid</i> , 2015 , 1-11	10.7	58
621	Energy Storage Systems for Shipboard Microgrids Review. <i>Energies</i> , 2018 , 11, 3492	3.1	57
620	. IEEE Transactions on Smart Grid, 2017 , 8, 1821-1830	10.7	56
619	Adaptive protection combined with machine learning for microgrids. <i>IET Generation, Transmission and Distribution</i> , 2019 , 13, 770-779	2.5	56
618	Effect of State Feedback Coupling and System Delays on the Transient Performance of Stand-Alone VSI With LC Output Filter. <i>IEEE Transactions on Industrial Electronics</i> , 2016 , 1-1	8.9	56
617	An overview of power quality enhancement techniques applied to distributed generation in electrical distribution networks. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 93, 201-214	16.2	56
616	Stable current sharing and voltage balancing in DC microgrids: A consensus-based secondary control layer. <i>Automatica</i> , 2018 , 95, 1-13	5.7	55
615	Decentralized Method for Load Sharing and Power Management in a Hybrid Single/Three-Phase-Islanded Microgrid Consisting of Hybrid Source PV/Battery Units. <i>IEEE Transactions on Power Electronics</i> , 2017 , 32, 6135-6144	7.2	54
614	. IEEE Transactions on Power Electronics, 2016 , 31, 6674-6685	7.2	53
613	A Currentless Sorting and Selection-Based Capacitor-Voltage-Balancing Method for Modular Multilevel Converters. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 1022-1025	7.2	53
612	Dynamic Characteristics Analysis and Stabilization of PV-Based Multiple Microgrid Clusters. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 805-818	10.7	53
611	. IEEE Transactions on Smart Grid, 2018 , 9, 2964-2975	10.7	52
610	Stochastic security and risk-constrained scheduling for an autonomous microgrid with demand response and renewable energy resources. <i>IET Renewable Power Generation</i> , 2017 , 11, 1812-1821	2.9	52
609	A Critical Examination of Frequency-Fixed Second-Order Generalized Integrator-Based Phase-Locked Loops. <i>IEEE Transactions on Power Electronics</i> , 2017 , 32, 6666-6672	7.2	51
608	Energy scheduling of community microgrid with battery cost using particle swarm optimisation. <i>Applied Energy</i> , 2019 , 254, 113723	10.7	51
607	Power distribution system improvement planning under hurricanes based on a new resilience index. Sustainable Cities and Society, 2018, 39, 592-604	10.1	51
606	Review of Ship Microgrids: System Architectures, Storage Technologies and Power Quality Aspects. <i>Inventions</i> , 2017 , 2, 4	2.9	51
605	A Simple Approach to Enhance the Performance of Complex-Coefficient Filter-Based PLL in Grid-Connected Applications. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 5081-5085	8.9	50

604	. IEEE Transactions on Power Electronics, 2018, 33, 4362-4372	7.2	50
603	A Circulating-Current Suppression Method for Parallel-Connected Voltage-Source Inverters With Common DC and AC Buses. <i>IEEE Transactions on Industry Applications</i> , 2017 , 53, 3758-3769	4.3	49
602	Stability analysis of DC microgrids with constant power load under distributed control methods. <i>Automatica</i> , 2018 , 90, 62-72	5.7	49
601	Optimal simultaneous day-ahead scheduling and hourly reconfiguration of distribution systems considering responsive loads. <i>International Journal of Electrical Power and Energy Systems</i> , 2019 , 104, 537-548	5.1	49
600	. IEEE Transactions on Industrial Electronics, 2013 , 60, 1291-1305	8.9	49
599	. IEEE Transactions on Industrial Electronics, 2017 , 64, 4561-4570	8.9	48
598	. IEEE Transactions on Power Electronics, 2018, 33, 9375-9386	7.2	48
597	A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 55, 823-839	16.2	48
596	A Spring Search Algorithm Applied to Engineering Optimization Problems. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 6173	2.6	48
595	. IEEE Transactions on Power Electronics, 2016 , 31, 5524-5537	7.2	47
594	Smart Inverters for Microgrid Applications: A Review. <i>Energies</i> , 2019 , 12, 840	3.1	46
593	. IEEE Transactions on Power Electronics, 2018 , 33, 7273-7287	7.2	46
592	. IEEE Transactions on Smart Grid, 2016 , 7, 2325-2336	10.7	46
591	Dynamic consensus algorithm based distributed global efficiency optimization of a droop controlled DC microgrid 2014 ,		46
590	Flywheel-Based Distributed Bus Signalling Strategy for the Public Fast Charging Station. <i>IEEE Transactions on Smart Grid</i> , 2014 , 5, 2825-2835	10.7	46
589	Passivity-based coordinated control for islanded AC microgrid. <i>Applied Energy</i> , 2018 , 229, 551-561	10.7	45
588	. IEEE Access, 2019 , 7, 114975-115001	3.5	45
587	Distributed cooperative synchronization strategy for multi-bus microgrids. <i>International Journal of Electrical Power and Energy Systems</i> , 2017 , 86, 18-28	5.1	45

(2014-2020)

586	Distributed Consensus-Based Fault Tolerant Control of Islanded Microgrids. <i>IEEE Transactions on Smart Grid</i> , 2020 , 11, 37-47	10.7	45	
585	. IEEE Transactions on Industrial Electronics, 2017 , 64, 2848-2854	8.9	44	
584	. IEEE Transactions on Consumer Electronics, 2016 , 62, 235-242	4.8	44	
583	. IEEE Access, 2017 , 5, 21323-21335	3.5	44	
582	Distributed secondary control for islanded MicroGrids - A networked control systems approach 2012 ,		44	
581	. IEEE Transactions on Power Electronics, 2018 , 33, 2136-2144	7.2	43	
580	SoC-based droop method for distributed energy storage in DC microgrid applications 2012,		43	
579	Low-voltage ride-through of a droop-based three-phase four-wire grid-connected microgrid. <i>IET Generation, Transmission and Distribution</i> , 2018 , 12, 1906-1914	2.5	42	
578	. IEEE Transactions on Industry Applications, 2015 , 51, 4729-4742	4.3	41	
577	A Voltage Modulated DPC Approach for Three-Phase PWM Rectifier. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 7612-7619	8.9	41	
576	Designing VRM Hysteretic Controllers for Optimal Transient Response. <i>IEEE Transactions on Industrial Electronics</i> , 2007 , 54, 1726-1738	8.9	41	
575	Resilience improvement planning of power-water distribution systems with multiple microgrids against hurricanes using clean strategies. <i>Journal of Cleaner Production</i> , 2019 , 223, 109-126	10.3	40	
574	A Systematic Approach to Design High-Order Phase-Locked Loops. <i>IEEE Transactions on Power Electronics</i> , 2015 , 30, 2885-2890	7.2	40	
573	Inverter-Current-Feedback Resonance-Suppression Method for LCL-Type DG System to Reduce Resonance-Frequency Offset and Grid-Inductance Effect. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 7036-7048	8.9	40	
572	An Enhanced State Observer for DC-Link Voltage Control of Three-Phase AC/DC Converters. <i>IEEE Transactions on Power Electronics</i> , 2018 , 33, 936-942	7.2	40	
571	A Flexible Power Control Strategy for Hybrid AC/DC Zones of Shipboard Power System With Distributed Energy Storages. <i>IEEE Transactions on Industrial Informatics</i> , 2018 , 14, 5496-5508	11.9	40	
57°	Application of a microgrid with renewables for a water treatment plant. <i>Applied Energy</i> , 2014 , 134, 20-3	 34 10.7	40	
569	Modeling, stability analysis and active stabilization of multiple DC-microgrid clusters 2014 ,		40	

568	. IEEE Transactions on Smart Grid, 2017 , 8, 2837-2848	10.7	40
567	Improved droop control strategy for grid-connected inverters. <i>Sustainable Energy, Grids and Networks</i> , 2015 , 1, 10-19	3.6	39
566	An improved power control strategy for hybrid AC-DC microgrids. <i>International Journal of Electrical Power and Energy Systems</i> , 2018 , 95, 364-373	5.1	39
565	. IEEE Transactions on Industrial Electronics, 2017 , 64, 1204-1213	8.9	39
564	Economic demand response model in liberalised electricity markets with respect to flexibility of consumers. <i>IET Generation, Transmission and Distribution</i> , 2017 , 11, 4291-4298	2.5	39
563	Study of the Effect of Time-Based Rate Demand Response Programs on Stochastic Day-Ahead Energy and Reserve Scheduling in Islanded Residential Microgrids. <i>Applied Sciences (Switzerland)</i> , 2017 , 7, 378	2.6	39
562	Optimal sizing of Battery Energy Storage Systems for dynamic frequency control in an islanded microgrid: A case study of Flinders Island, Australia. <i>Energy</i> , 2020 , 195, 117059	7.9	39
561	Improved control strategy for the three-phase grid-connected inverter. <i>IET Renewable Power Generation</i> , 2015 , 9, 587-592	2.9	38
560	Energy Management Strategy for Grid-Tied Microgrids Considering the Energy Storage Efficiency. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 9539-9549	8.9	38
559	Internet of Things for Modern Energy Systems: State-of-the-Art, Challenges, and Open Issues. <i>Energies</i> , 2018 , 11, 1252	3.1	38
558	Power management optimization of hybrid power systems in electric ferries. <i>Energy Conversion and Management</i> , 2018 , 172, 50-66	10.6	38
557	. IEEE Transactions on Power Electronics, 2019 , 34, 9404-9421	7.2	37
556	Energy Management System for an Islanded Microgrid With Convex Relaxation. <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 7175-7185	4.3	37
555	Selective compensation of voltage harmonics in grid-connected microgrids. <i>Mathematics and Computers in Simulation</i> , 2013 , 91, 211-228	3.3	37
554	Control strategy of interlinking converters as the key segment of hybrid ACDC microgrids. <i>IET Generation, Transmission and Distribution</i> , 2016 , 10, 1671-1681	2.5	37
553	. IEEE Transactions on Industry Applications, 2016 , 52, 3348-3356	4.3	37
552	. IEEE Transactions on Power Systems, 2019 , 34, 1780-1800	7	37
551	AC Ship Microgrids: Control and Power Management Optimization. <i>Energies</i> , 2018 , 11, 1458	3.1	37

(2013-2020)

550	. IEEE Transactions on Industry Applications, 2020 , 56, 1882-1895	4.3	36
549	A microgrid cluster structure and its autonomous coordination control strategy. <i>International Journal of Electrical Power and Energy Systems</i> , 2018 , 100, 69-80	5.1	35
548	. IEEE Transactions on Industrial Electronics, 2015 , 62, 5018-5022	8.9	35
547	Brief Survey on Attack Detection Methods for Cyber-Physical Systems. <i>IEEE Systems Journal</i> , 2020 , 14, 5329-5339	4.3	35
546	Optimisation of solar/wind/bio-generator/diesel/battery based microgrids for rural areas: A PSO-GWO approach. <i>Sustainable Cities and Society</i> , 2021 , 67, 102723	10.1	35
545	. IEEE Transactions on Smart Grid, 2016 , 1-1	10.7	35
544	Decentralized Optimal Frequency Control in Autonomous Microgrids. <i>IEEE Transactions on Power Systems</i> , 2019 , 34, 2345-2353	7	35
543	Voltage Stabilization: A Critical Step Toward High Photovoltaic Penetration. <i>IEEE Industrial Electronics Magazine</i> , 2019 , 13, 17-30	6.2	34
542	. IEEE Transactions on Industry Applications, 2019 , 55, 5311-5319	4.3	34
541	Steady-State Linear Kalman Filter-Based PLLs for Power Applications: A Second Look. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 9795-9800	8.9	34
540	Multiagent-Based Reactive Power Sharing and Control Model for Islanded Microgrids. <i>IEEE Transactions on Sustainable Energy</i> , 2016 , 7, 1232-1244	8.2	33
539	Coordination of EVs Participation for Load Frequency Control in Isolated Microgrids. <i>Applied Sciences (Switzerland)</i> , 2017 , 7, 539	2.6	33
538	. IEEE Transactions on Energy Conversion, 2019 , 34, 573-584	5.4	33
537	. IEEE Transactions on Smart Grid, 2020 , 11, 942-957	10.7	33
536	Power Management Strategy Based on Virtual Inertia for DC Microgrids. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 12472-12485	7.2	32
535	Power flow modeling of islanded AC microgrids with hierarchical control. <i>International Journal of Electrical Power and Energy Systems</i> , 2019 , 105, 28-36	5.1	32
534	Distributed consensus-based control of multiple DC-microgrids clusters 2014 ,		32
533	Stability, power sharing, & distributed secondary control in droop-controlled microgrids 2013 ,		32

532	Droop-controlled inverters with seamless transition between islanding and grid-connected operations 2011 ,		32
531	All-Pass-Filter-Based PLL Systems: Linear Modeling, Analysis, and Comparative Evaluation. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 3558-3572	7.2	32
530	Passivity-Based Design of Plug-and-Play Current-Controlled Grid-Connected Inverters. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 2135-2150	7.2	32
529	. IEEE Transactions on Smart Grid, 2018 , 9, 4847-4860	10.7	31
528	Microgrid central controller development and hierarchical control implementation in the intelligent microgrid lab of Aalborg University 2015 ,		31
527	Conventional P-IQ-V Droop Control in Highly Resistive Line of Low-Voltage Converter-Based AC Microgrid. <i>Energies</i> , 2016 , 9, 943	3.1	31
526	Distributed Secondary Control and Management of Islanded Microgrids via Dynamic Weights. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 2196-2207	10.7	31
525	. IEEE Transactions on Power Electronics, 2020 , 35, 1227-1238	7.2	31
524	. IEEE Transactions on Smart Grid, 2017 , 8, 2775-2783	10.7	30
523	Model predictive control methods of leakage current elimination for a three-level T-type transformerless PV inverter. <i>IET Power Electronics</i> , 2018 , 11, 1492-1498	2.2	30
522	Dynamic Equivalent Modeling for Multi-Microgrid Based on Structure Preservation Method. <i>IEEE Transactions on Smart Grid</i> , 2019 , 10, 3929-3942	10.7	30
521	An Adaptive Resonant Regulator for Single-Phase Grid-Tied VSCs. <i>IEEE Transactions on Power Electronics</i> , 2018 , 33, 1867-1873	7.2	30
520	. IEEE Transactions on Power Electronics, 2017, 32, 8218-8228	7.2	29
519	. IEEE Transactions on Smart Grid, 2019 , 10, 6580-6591	10.7	29
518	Robust Grid-Current-Feedback Resonance Suppression Method for LCL-Type Grid-Connected Inverter Connected to Weak Grid. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2018 , 6, 2126-2137	5.6	29
517	. IEEE Transactions on Power Electronics, 2017 , 32, 4411-4420	7.2	29
516	An overview of low voltage DC distribution systems for residential applications 2015,		29
515	Macroprotections for Microgrids: Toward a New Protection Paradigm Subsequent to Distributed Energy Resource Integration. <i>IEEE Industrial Electronics Magazine</i> , 2016 , 10, 6-18	6.2	29

514	. IEEE Transactions on Smart Grid, 2021 , 12, 977-987	10.7	29
513	Scalable Solar dc Micrigrids: On the Path to Revolutionizing the Electrification Architecture of Developing Communities. <i>IEEE Electrification Magazine</i> , 2018 , 6, 63-72	2.6	29
512	. IEEE Transactions on Power Electronics, 2016 , 31, 2919-2936	7.2	28
511	Optimal allocation for combined heat and power system with respect to maximum allowable capacity for reduced losses and improved voltage profile and reliability of microgrids considering loading condition. <i>Energy</i> , 2020 , 196, 117124	7.9	28
510	. IEEE Transactions on Power Electronics, 2018, 33, 7132-7147	7.2	28
509	. IEEE Transactions on Industrial Electronics, 2018 , 65, 3125-3135	8.9	28
508	A Stochastic Bi-Level Scheduling Approach for the Participation of EV Aggregators in Competitive Electricity Markets. <i>Applied Sciences (Switzerland)</i> , 2017 , 7, 1100	2.6	28
507	. IEEE Transactions on Industrial Informatics, 2016 , 12, 1093-1103	11.9	28
506	. IEEE Transactions on Power Electronics, 2019 , 34, 8045-8061	7.2	28
505	Digitalization and decentralization driving transactive energy Internet: Key technologies and infrastructures. <i>International Journal of Electrical Power and Energy Systems</i> , 2021 , 126, 106593	5.1	28
504	Coordinated control of multifunctional inverters for voltage support and harmonic compensation in a grid-connected microgrid. <i>Electric Power Systems Research</i> , 2018 , 155, 254-264	3.5	28
503	Integration and Decentralized Control of Standalone Solar Home Systems for Off-Grid Community Applications. <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 7240-7250	4.3	27
502	Performance improvement of shunt active power filter based on non-linear least-square approach. <i>Electric Power Systems Research</i> , 2018 , 160, 44-55	3.5	27
501	Active Power Quality Improvement Strategy for Grid-Connected Microgrid Based on Hierarchical Control. <i>IEEE Transactions on Smart Grid</i> , 2018 , 9, 3486-3495	10.7	27
500	Robust two degrees-of-freedom single-current control strategy for LCL-type grid-connected DG system under grid-frequency fluctuation and grid-impedance variation. <i>IET Power Electronics</i> , 2016 , 9, 2682-2691	2.2	27
499	. IEEE Transactions on Power Electronics, 2017 , 32, 8100-8114	7.2	27
498	Grid-Tied Photovoltaic and Battery Storage Systems with Malaysian Electricity Tariff Review on Maximum Demand Shaving. <i>Energies</i> , 2017 , 10, 1884	3.1	27
497	Design of an Analog Quasi-Steady-State Nonlinear Current-Mode Controller for Single-Phase Active Power Filter. <i>IEEE Transactions on Industrial Electronics</i> , 2009 , 56, 4872-4881	8.9	27

496	A Novel Model Predictive Control Strategy to Eliminate Zero-Sequence Circulating Current in Paralleled Three-Level Inverters. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2019 , 7, 309-320	5.6	27
495	. IEEE Transactions on Smart Grid, 2020 , 11, 1737-1747	10.7	27
494	. IEEE Transactions on Smart Grid, 2020 , 11, 1018-1029	10.7	27
493	A novel quasi-master-slave control frame for PV-storage independent microgrid. <i>International Journal of Electrical Power and Energy Systems</i> , 2018 , 97, 262-274	5.1	27
492	A Direct Maximum Power Point Tracking Method for Single-Phase Grid-Connected PV Inverters. <i>IEEE Transactions on Power Electronics</i> , 2018 , 33, 8961-8971	7.2	26
491	. IEEE Transactions on Power Electronics, 2017 , 32, 5675-5687	7.2	26
490	A Dual-Discrete Model Predictive Control-Based MPPT for PV Systems. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 9686-9697	7.2	26
489	Microgrid Stability Controller Based on Adaptive Robust Total SMC. <i>Energies</i> , 2015 , 8, 1784-1801	3.1	25
488	A PLL-Based Controller for Three-Phase Grid-Connected Power Converters. <i>IEEE Transactions on Power Electronics</i> , 2018 , 33, 911-916	7.2	25
487	. IEEE Transactions on Industry Applications, 2016 , 52, 5019-5028	4.3	25
486	A knowledge discovery in databases approach for industrial microgrid planning. <i>Renewable and Sustainable Energy Reviews</i> , 2016 , 60, 615-630	16.2	25
485	Decentralized Control for Parallel Operation of Distributed Generation Inverters in Microgrids Using Resistive Output Impedance. <i>Industrial Electronics Society (IECON), Annual Conference of IEEE</i> , 2006 ,		25
484	. IEEE Transactions on Smart Grid, 2020 , 11, 1330-1342	10.7	25
483	Standard SOGI-FLL and Its Close Variants: Precise Modeling in LTP Framework and Determining Stability Region/Robustness Metrics. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 409-422	7.2	25
482	. IEEE Transactions on Power Electronics, 2017 , 32, 1615-1625	7.2	24
481	. IEEE Access, 2017 , 5, 3263-3272	3.5	24
480	Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems Review. <i>Energies</i> , 2020 , 13, 2149	3.1	24
479	2014,		24

(2020-2014)

478	Event-triggered hybrid control based on multi-agent system for microgrids. <i>IET Generation, Transmission and Distribution</i> , 2014 , 8, 1987-1997	2.5	24
477	A New Synchronous Reference Frame-Based Method for Single-Phase Shunt Active Power Filters. Journal of Power Electronics, 2013 , 13, 692-700	0.9	24
476	Microgrids Literature Review through a Layers Structure. <i>Energies</i> , 2019 , 12, 4381	3.1	24
475	. IEEE Transactions on Energy Conversion, 2017 , 32, 941-952	5.4	23
474	. IEEE Transactions on Smart Grid, 2017 , 8, 2890-2902	10.7	23
473	Mode-triggered droop method for the decentralized energy management of an islanded hybrid PV/hydrogen/battery DC microgrid. <i>Energy</i> , 2020 , 199, 117441	7.9	23
472	. IEEE Transactions on Industrial Informatics, 2018, 14, 5518-5529	11.9	23
471	An Analysis of the PLLs With Secondary Control Path. <i>IEEE Transactions on Industrial Electronics</i> , 2014 , 61, 4824-4828	8.9	23
470	Flexible System Integration and Advanced Hierarchical Control Architectures in the Microgrid Research Laboratory of Aalborg University. <i>IEEE Transactions on Industry Applications</i> , 2015 , 1-1	4.3	23
469	Distributed energy resources in grid interactive AC microgrids 2010,		23
468	A NEW METHODOLOGY CALLED DICE GAME OPTIMIZER FOR CAPACITOR PLACEMENT IN DISTRIBUTION SYSTEMS. <i>Electrical Engineering & Electromechanics</i> , 2020 , 61-64	2	23
467	Peer-to-Peer Energy Market for Community Microgrids [Technology Leaders]. <i>IEEE Electrification Magazine</i> , 2018 , 6, 102-107	2.6	23
466	. IEEE Access, 2017 , 5, 10130-10140	3.5	22
465	Single-Phase FLLs Based on Linear Kalman Filter, Limit-Cycle Oscillator, and Complex Bandpass Filter: Analysis and Comparison With a Standard FLL in Grid Applications. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 11774-11790	7.2	22
464	Multi-functional distributed generation unit for power quality enhancement. <i>IET Power Electronics</i> , 2015 , 8, 467-476	2.2	22
463	Power management techniques for grid-connected DC microgrids: A comparative evaluation. <i>Applied Energy</i> , 2020 , 269, 115057	10.7	22
462	. IEEE Transactions on Power Electronics, 2020 , 35, 6636-6648	7.2	22
461	. IEEE Transactions on Power Electronics, 2020 , 35, 9865-9885	7.2	22

460	A hierarchical energy management system for islanded multi-microgrid clusters considering frequency security constraints. <i>International Journal of Electrical Power and Energy Systems</i> , 2020 , 121, 106134	5.1	22
459	A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing. <i>Energies</i> , 2017 , 10, 1116	3.1	22
458	Research On Variable-Length Transfer Delay and Delayed-Signal-Cancellation-Based PLLs. <i>IEEE Transactions on Power Electronics</i> , 2018 , 33, 8388-8398	7.2	22
457	An Open-Loop Grid Synchronization Approach for Single-Phase Applications. <i>IEEE Transactions on Power Electronics</i> , 2018 , 33, 5548-5555	7.2	22
456	Stabilizing plug-and-play regulators and secondary coordinated control for AC islanded microgrids with bus-connected topology. <i>Applied Energy</i> , 2018 , 210, 914-924	10.7	22
455	Security-constrained unit commitment in AC microgrids considering stochastic price-based demand response and renewable generation. <i>International Transactions on Electrical Energy Systems</i> , 2018 , 28, e2596	2.2	22
454	Advanced Single-Phase DSC-Based PLLs. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 3226-3238	7.2	22
453	. IEEE Transactions on Industrial Electronics, 2019 , 66, 1089-1097	8.9	22
452	2015,		22
451	Selective harmonic virtual impedance for voltage source inverters with LCL filter in microgrids 2012 ,		22
450	Energy management system based on fuzzy fractional order PID controller for transient stability improvement in microgrids with energy storage. <i>International Transactions on Electrical Energy Systems</i> , 2016 , 26, 2087-2106	2.2	22
449	Extended-Optimal-Power-Flow-Based Hierarchical Control for Islanded AC Microgrids. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 840-848	7.2	22
448	Optimal Decision-Making Strategy of an Electric Vehicle Aggregator in Short-Term Electricity Markets. <i>Energies</i> , 2018 , 11, 2413	3.1	22
447	. IEEE Access, 2019 , 7, 36896-36909	3.5	21
446	Matrix pencil method-based reference current generation for shunt active power filters. <i>IET Power Electronics</i> , 2018 , 11, 772-780	2.2	21
445	An optimal market-oriented demand response model for price-responsive residential consumers. <i>Energy Efficiency</i> , 2019 , 12, 803-815	3	21
444	Grid simulator for power quality assessment of micro-grids. IET Power Electronics, 2013, 6, 700-709	2.2	21

442	Smart grid and renewable energy systems 2011 ,		21
441	Hierarchical control scheme for voltage Harmonics Compensation in an islanded droop-controlled microgrid 2011 ,		21
440	Stochastic Predictive Energy Management of Multi-Microgrid Systems. <i>Applied Sciences</i> (Switzerland), 2020 , 10, 4833	2.6	21
439	. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017 , 5, 1031-1044	5.6	20
438	. IEEE Transactions on Transportation Electrification, 2020 , 6, 856-868	7.6	20
437	Flat tie-line power scheduling control of grid-connected hybrid microgrids. <i>Applied Energy</i> , 2018 , 210, 786-799	10.7	20
436	Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions. <i>Energies</i> , 2019 , 12, 3798	3.1	20
435	Hierarchical control for multiple DC-microgrids clusters 2014 ,		20
434	Study of large-signal stability of an inverter-based generator using a Lyapunov function 2014,		20
433	Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters. <i>Energies</i> , 2016 , 9, 642	3.1	20
432	Modeling and design of a multivariable control system for multi-paralleled grid-connected inverters with LCL filter. <i>International Journal of Electrical Power and Energy Systems</i> , 2018 , 94, 354-362	5.1	20
431	Effect of placement of droop based generators in distribution network on small signal stability margin and network loss. <i>International Journal of Electrical Power and Energy Systems</i> , 2017 , 88, 108-11	8 ^{5.1}	19
430	Stochastic Consensus-Based Control of \$mu\$Gs With Communication Delays and Noises. <i>IEEE Transactions on Power Systems</i> , 2019 , 34, 3573-3581	7	19
429	Analysis, control and experimental verification of a single-phase capacitive-coupling grid-connected inverter. <i>IET Power Electronics</i> , 2015 , 8, 770-782	2.2	19
428	Optimal utilization of microgrids supplemented with battery energy storage systems in grid support applications 2015 ,		19
427	Optimal operation management of a regional network of microgrids based on chance-constrained model predictive control. <i>IET Generation, Transmission and Distribution</i> , 2018 , 12, 3772-3779	2.5	19
426	Modeling and Stability Assessment of Single-Phase Grid Synchronization Techniques: Linear Time-Periodic Versus Linear Time-Invariant Frameworks. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 20-27	7.2	19
425	. IEEE Transactions on Smart Grid, 2014 , 5, 2473-2475	10.7	19

424	Second order generalized integrator based reference current generation method for single-phase shunt active power filters under adverse grid conditions 2013 ,		19
423	Smart Shipboard Power System Operation and Management. <i>Inventions</i> , 2016 , 1, 22	2.9	19
422	Optimal planning and operation management of a ship electrical power system with energy storage system 2016 ,		19
421	Multirate Resonant Controllers for Grid-Connected Inverters With Harmonic Compensation Function. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 8981-8991	8.9	19
420	. IEEE Transactions on Industrial Electronics, 2021 , 68, 5897-5908	8.9	19
419	A Multi-Attribute Expansion Planning Model for Integrated GasElectricity System. <i>Energies</i> , 2018 , 11, 2573	3.1	19
418	Adaptive frequency regulation strategy in multi-area microgrids including renewable energy and electric vehicles supported by virtual inertia. <i>International Journal of Electrical Power and Energy Systems</i> , 2021 , 129, 106814	5.1	19
417	Phase Compensated Reduced Order Generalized Integrators for Grid-Tied VSCs With Harmonics Compensation Capability. <i>IEEE Transactions on Industry Applications</i> , 2018 , 54, 2568-2578	4.3	18
416	2017,		18
415	Optimization with system damping restoration for droop controlled DC-DC converters 2013,		18
414	dq-Frame Impedance Modeling of Three-Phase Grid-Tied Voltage Source Converters Equipped With Advanced PLLs. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 3524-3539	7.2	18
413	. IEEE Transactions on Smart Grid, 2016 , 7, 74-83	10.7	17
412	. IEEE Transactions on Industrial Electronics, 2017 , 64, 8767-8777	8.9	17
411	Effect of phase-locked loop on small-signal perturbation modelling and stability analysis for three-phase LCL-type inverter connected to weak grid. <i>IET Renewable Power Generation</i> , 2019 , 13, 86-9	3 ^{2.9}	17
410	. IEEE Transactions on Power Electronics, 2019, 34, 11371-11382	7.2	17
409	An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions. <i>PLoS ONE</i> , 2017 , 12, e016485	6 ^{3.7}	17
408	A stochastic bi-level decision-making framework for a load-serving entity in day-ahead and balancing markets. <i>International Transactions on Electrical Energy Systems</i> , 2019 , 29, e12109	2.2	17
407	An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges. <i>Energies</i> , 2021 , 14, 6525	3.1	17

(2016-2019)

406	An optimized direct control method applied to multilevel inverter for microgrid power quality enhancement. <i>International Journal of Electrical Power and Energy Systems</i> , 2019 , 107, 496-506	5.1	17
405	A novel Decoupled Trigonometric Saturated droop controller for power sharing in islanded low-voltage microgrids. <i>Electric Power Systems Research</i> , 2019 , 168, 146-161	3.5	17
404	. IEEE Transactions on Transportation Electrification, 2019 , 5, 828-839	7.6	16
403	Modulated Model Predictive Control for Modular Multilevel AC/AC Converter. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 10359-10372	7.2	16
402	Energy Harvesting From Harbor Cranes With Flywheel Energy Storage Systems. <i>IEEE Transactions on Industry Applications</i> , 2019 , 55, 3354-3364	4.3	16
401	An Analysis of Modified Demodulation-Based Grid Voltage Parameter Estimator. <i>IEEE Transactions on Power Electronics</i> , 2015 , 30, 6528-6533	7.2	16
400	DM: Dehghani Method for Modifying Optimization Algorithms. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 7683	2.6	16
399	A communication-free economical-sharing scheme for cascaded-type microgrids. <i>International Journal of Electrical Power and Energy Systems</i> , 2019 , 104, 1-9	5.1	16
398	. IEEE Access, 2019 , 7, 96743-96752	3.5	16
397	Fundamental impedance identification method for grid-connected voltage source inverters. <i>IET Power Electronics</i> , 2014 , 7, 1099-1105	2.2	16
396	Power flow analysis for droop controlled LV hybrid AC-DC microgrids with virtual impedance 2014 ,		16
395	Control of grid interactive AC microgrids 2010 ,		16
394	New Challenges in the Design of Microgrid Systems: Communication Networks, Cyberattacks, and Resilience. <i>IEEE Electrification Magazine</i> , 2020 , 8, 98-106	2.6	16
393	. IEEE Transactions on Industrial Electronics, 2020 , 67, 5531-5542	8.9	16
392	Robust scenario-based concept for stochastic energy management of an energy hub contains intelligent parking lot considering convexity principle of CHP nonlinear model with triple operational zones. Sustainable Cities and Society, 2021, 68, 102795	10.1	16
391	Probabilistic optimal power flow in islanded microgrids with load, wind and solar uncertainties including intermittent generation spatial correlation. <i>Energy</i> , 2021 , 222, 119847	7.9	16
390	Operation Cost Minimization of Droop-Controlled AC Microgrids Using Multiagent-Based Distributed Control. <i>Energies</i> , 2016 , 9, 717	3.1	16
389	A Coordinated Control for Photovoltaic Generators and Energy Storages in Low-Voltage AC/DC Hybrid Microgrids under Islanded Mode. <i>Energies</i> , 2016 , 9, 651	3.1	16

388	Virtual Positive-Damping Reshaped Impedance Stability Control Method for the Offshore MVDC System. <i>IEEE Transactions on Power Electronics</i> , 2019 , 34, 4951-4966	7.2	16
387	Distributed secondary and tertiary controls for IV droop-controlled-paralleled DCDC converters. <i>IET Generation, Transmission and Distribution</i> , 2018 , 12, 1538-1546	2.5	15
386	Harmonic Issues Assessment on PWM VSC-Based Controlled Microgrids Using Newton Methods. <i>IEEE Transactions on Smart Grid</i> , 2018 , 9, 1002-1011	10.7	15
385	Grid-forming VSC control in four-wire systems with unbalanced nonlinear loads. <i>Electric Power Systems Research</i> , 2017 , 152, 249-256	3.5	15
384	Economic Power Schedule and Transactive Energy through an Intelligent Centralized Energy Management System for a DC Residential Distribution System. <i>Energies</i> , 2017 , 10, 916	3.1	15
383	Highly efficient distributed generation and high-capacity energy storage. <i>Chemical Engineering and Processing: Process Intensification</i> , 2012 , 51, 18-31	3.7	15
382	Reduction of voltage harmonics for parallel-operated inverters 2011,		15
381	Adaptive droop control applied to distributed generation inverters connected to the grid 2008,		15
380	A Virtual-Impedance Droop Control for Accurate Active Power Control and Reactive Power Sharing Using Capacitive-Coupling Inverters. <i>IEEE Transactions on Industry Applications</i> , 2020 , 56, 6722-6733	4.3	15
379	. IEEE Electrification Magazine, 2019 , 7, 81-88	2.6	15
378	Protection of LVDC Microgrids in Grid-Connected and Islanded Modes Using Bifurcation Theory. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2021 , 9, 2597-2604	5.6	15
377	Energy management system optimization in islanded microgrids: An overview and future trends. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 149, 111327	16.2	15
376	. IEEE Transactions on Energy Conversion, 2019 , 34, 1741-1750	5.4	14
375	A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks. <i>Sustainability</i> , 2019 , 11, 301	3.6	14
374	. IEEE Transactions on Power Electronics, 2020 , 35, 9813-9823	7.2	14
373	A Stochastic Model Predictive Control Approach for Joint Operational Scheduling and Hourly Reconfiguration of Distribution Systems. <i>Energies</i> , 2018 , 11, 1884	3.1	14
372	Secondary voltage control for harmonics suppression in islanded microgrids 2011,		14
371	A New Decentralized Control Strategy of Microgrids in the Internet of Energy Paradigm. <i>Energies</i> , 2021 , 14, 2183	3.1	14

(2021-2019)

370	Delay-Dependent Small-Signal Stability Analysis and Compensation Method for Distributed Secondary Control of Microgrids. <i>IEEE Access</i> , 2019 , 7, 170919-170935	3.5	14
369	. IEEE Transactions on Industrial Informatics, 2020 , 16, 1516-1528	11.9	14
368	. IEEE Transactions on Industrial Electronics, 2021 , 68, 9630-9640	8.9	14
367	Improved P-f/Q-V and P-V/Q-f droop controllers for parallel distributed generation inverters in AC microgrid. <i>Sustainable Cities and Society</i> , 2018 , 41, 421-442	10.1	14
366	Binary Spring Search Algorithm for Solving Various Optimization Problems. <i>Applied Sciences</i> (Switzerland), 2021 , 11, 1286	2.6	14
365	. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017 , 5, 971-981	5.6	13
364	Cloud-Fog Architecture Based Energy Management and Decision-Making for Next-Generation Distribution Network with Prosumers and Internet of Things Devices. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 372	2.6	13
363	Control of Hybrid Diesel/PV/Battery/Ultra-Capacitor Systems for Future Shipboard Microgrids. <i>Energies</i> , 2019 , 12, 3460	3.1	13
362	Flexible Compensation of Voltage and Current Unbalance and Harmonics in Microgrids. <i>Energies</i> , 2017 , 10, 1568	3.1	13
361	A D-Q synchronous frame controller for single-phase inverters 2011 ,		13
360	A centralized control architecture for harmonic voltage suppression in islanded microgrids 2011,		13
359	A Repetitive Control Scheme Aimed at Compensating the 6k + 1 Harmonics for a Three-Phase Hybrid Active Filter. <i>Energies</i> , 2016 , 9, 787	3.1	13
358	Optimal adaptive droop control for effective load sharing in AC microgrids 2016,		13
357	Multiobjective optimization in combinatorial wind farms system integration and resistive SFCL using analytical hierarchy process. <i>Renewable Energy</i> , 2016 , 94, 366-382	8.1	13
356	Stochastic risk-constrained decision-making approach for a retailer in a competitive environment with flexible demand side resources. <i>International Transactions on Electrical Energy Systems</i> , 2019 , e2719	2.2	13
355	. IEEE Transactions on Industrial Informatics, 2019 , 15, 4525-4535	11.9	13
354	. IEEE Systems Journal, 2019 , 13, 864-874	4.3	13
	Sliding mode controller-based switched-capacitor-based high DC gain and low voltage stress DC-DC		

352	Multi-level energy management and optimal control of a residential DC microgrid 2017,		12
351	Distributed coordination control for suppressing circulating current in parallel inverters of islanded microgrid. <i>IET Generation, Transmission and Distribution</i> , 2019 , 13, 968-975	2.5	12
350	Economic power dispatch of distributed generators in a grid-connected microgrid 2015,		12
349	Optimized energy management of a single-house residential micro-grid with automated demand response 2015 ,		12
348	Optimal scheduling of distributed energy resources and responsive loads in islanded microgrids considering voltage and frequency security constraints. <i>Journal of Renewable and Sustainable Energy</i> , 2018 , 10, 025903	2.5	12
347	Generalized coupling resonance modeling, analysis, and active damping of multi-parallel inverters in microgrid operating in grid-connected mode. <i>Journal of Modern Power Systems and Clean Energy</i> , 2016 , 4, 63-75	4	12
346	A comprehensive control system for multi-parallel grid-connected inverters with LCL filter in weak grid condition. <i>Electric Power Systems Research</i> , 2018 , 163, 288-300	3.5	12
345	Design and analysis of a transformerless STATCOM based on hybrid cascaded multilevel converter. <i>International Journal of Electrical Power and Energy Systems</i> , 2019 , 104, 694-704	5.1	12
344	Voltage control of DC islanded microgrids: a decentralized scalable approach 2015,		12
343	Introduction to the Special Section on Industrial Applications and Implementation Issues of the Kalman Filter. <i>IEEE Transactions on Industrial Electronics</i> , 2012 , 59, 4165-4168	8.9	12
342	Genetic Algorithm for Energy Commitment in a Power System Supplied by Multiple Energy Carriers. <i>Sustainability</i> , 2020 , 12, 10053	3.6	12
341	. IEEE Transactions on Sustainable Energy, 2019 , 10, 1718-1730	8.2	12
340	. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020 , 8, 2508-2519	5.6	12
339	Nonlinear control and stability analysis of single stage grid-connected photovoltaic systems. <i>International Journal of Electrical Power and Energy Systems</i> , 2020 , 115, 105439	5.1	12
338	. IEEE Transactions on Power Electronics, 2021 , 36, 2420-2431	7.2	12
337	Large-Signal Stability Improvement of DC-DC Converters in DC Microgrid. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 2534-2544	5.4	12
336	Frequency-division power sharing and hierarchical control design for DC shipboard microgrids with hybrid energy storage systems 2017 ,		11
335	2015,		11

(2020-2015)

334	Fuzzy droop control loops adjustment for stored energy balance in distributed energy storage system 2015 ,		11
333	Adaptive-SMC Based Output Impedance Shaping in DC Microgrids Affected by Inverter Loads. <i>IEEE Transactions on Sustainable Energy</i> , 2020 , 11, 2940-2949	8.2	11
332	Modeling and Experimental Validation of an Islanded No-Inertia Microgrid Site. <i>IEEE Transactions on Sustainable Energy</i> , 2018 , 9, 1812-1821	8.2	11
331	Adaptive Control Design for Autonomous Operation of Multiple Energy Storage Systems in Power Smoothing Applications. <i>IEEE Transactions on Industrial Electronics</i> , 2018 , 65, 6612-6624	8.9	11
330	Power quality enhancement and power management of a multifunctional interfacing inverter for PV and battery energy storage system. <i>International Transactions on Electrical Energy Systems</i> , 2018 , 28, e2643	2.2	11
329	. IEEE Transactions on Industry Applications, 2018 , 54, 6267-6278	4.3	11
328	A hybrid islanding detection technique for inverter-based distributed generator units. <i>International Transactions on Electrical Energy Systems</i> , 2019 , 29, e12113	2.2	11
327	Comparative admittance-based analysis for different droop control approaches in DC microgrids 2017 ,		11
326	Load shifting control and management of domestic microgeneration systems for improved energy efficiency and comfort 2015 ,		11
325	Dual-Input Quasi-Z-Source PV Inverter: Dynamic Modeling, Design, and Control. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 6483-6493	8.9	11
324	Dual-loop control strategy applied to the cluster of multiple nanogrids for rural electrification applications. <i>IET Smart Grid</i> , 2019 , 2, 327-335	2.7	11
323	. IEEE Transactions on Industry Applications, 2019 , 55, 765-775	4.3	11
322	System-Level Large-Signal Stability Analysis of Droop-Controlled DC Microgrids. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 4224-4236	7.2	11
321	Optimization-Based Power and Energy Management System in Shipboard Microgrid: A Review. <i>IEEE Systems Journal</i> , 2021 , 1-13	4.3	11
320	Resilient Design of Robust Multi-Objectives PID Controllers for Automatic Voltage Regulators: D-Decomposition Approach. <i>IEEE Access</i> , 2021 , 9, 106589-106605	3.5	11
319	Microgrids Technologies in Future Seaports 2018,		11
318	Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme. <i>Applied Energy</i> , 2019 , 251, 113374	10.7	10
317	Review of Dynamic Positioning Control in Maritime Microgrid Systems. <i>Energies</i> , 2020 , 13, 3188	3.1	10

316	IoT-enabled Microgrid for Intelligent Energy-aware Buildings: A Novel Hierarchical Self-consumption Scheme with Renewables. <i>Electronics (Switzerland)</i> , 2020 , 9, 550	2.6	10
315	Optimal Operation of Energy Storage System for a Prosumer Microgrid Considering Economical and Environmental Effects 2019 ,		10
314	Potential energy savings by using direct current for residential applications: A Danish household study case 2017 ,		10
313	. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017 , 5, 925-927	5.6	10
312	Coordinated power control strategy based on primary-frequency-signaling for islanded microgrids 2013 ,		10
311	2010,		10
310	2009,		10
309	Parallel operation of uninterruptible power supply systems in microgrids 2007,		10
308	Control of Line-Interactive UPS Connected in Parallel Forming a Microgrid 2007,		10
307	. IEEE Industrial Electronics Magazine, 2020 , 14, 91-105	6.2	10
306	A Review of DC Shipboard Microgrids Part I: Power Architectures, Energy Storage and Power Converters. <i>IEEE Transactions on Power Electronics</i> , 2021 , 1-1	7.2	10
305	A New D octor and Patient (Optimization Algorithm: An Application to Energy Commitment Problem. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 5791	2.6	10
304	A New Two-Stage Algorithm for Solving Optimization Problems. <i>Entropy</i> , 2021 , 23,	2.8	10
303	A review of reactive power sharing control techniques for islanded microgrids. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 141, 110745	16.2	10
302	. IEEE Transactions on Smart Grid, 2021 , 12, 2760-2775	10.7	10
301	Microgrid Transactive Energy Systems: A Perspective on Design, Technologies, and Energy Markets 2019 ,		10
300	. IEEE Transactions on Industrial Electronics, 2021 , 68, 2564-2574	8.9	10
299	Future Greener Seaports: A Review of New Infrastructure, Challenges, and Energy Efficiency Measures. <i>IEEE Access</i> , 2021 , 9, 75568-75587	3.5	10

298	. IEEE Access, 2018 , 6, 56184-56191	3.5	10
297	A Communication-Free Decentralized Control for Grid-Connected Cascaded PV Inverters. <i>Energies</i> , 2018 , 11, 1375	3.1	10
296	. IEEE Transactions on Industrial Electronics, 2021 , 1-1	8.9	10
295	2015,		9
294	Abc-frame complex-coefficient filter and controller based current harmonic elimination strategy for three-phase grid connected inverter. <i>Journal of Modern Power Systems and Clean Energy</i> , 2016 , 4, 87-93	4	9
293	Secondary coordinated control of islanded microgrids based on consensus algorithms 2014,		9
292	Secondary control for compensation of voltage harmonics and unbalance in microgrids 2012,		9
291	Comprehensive Review on Renewable Energy Sources in Egypt¶urrent Status, Grid Codes and Future Vision. <i>IEEE Access</i> , 2022 , 10, 4081-4101	3.5	9
290	Co-design of the LCL Filter and Control for Grid-Connected Inverters. <i>Journal of Power Electronics</i> , 2014 , 14, 1047-1056	0.9	9
289	Performance Evaluations of Four MAF-Based PLL Algorithms for Grid-Synchronization of Three-Phase Grid-Connected PWM Inverters and DGs. <i>Journal of Power Electronics</i> , 2016 , 16, 1904-1917	0.9	9
288	Power quality issues of smart microgrids: applied techniques and decision making analysis 2020 , 89-119)	9
287	Optimal use of vehicle-to-grid technology to modify the load profile of the distribution system. <i>Journal of Energy Storage</i> , 2020 , 31, 101627	7.8	9
286	Charging station Stochastic Programming for Hydrogen/Battery Electric Buses using Multi-Criteria Crow Search Algorithm. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 144, 111046	16.2	9
285	Enhancement of Frequency Regulation in AC Microgrid: A Fuzzy-MPC Controlled Virtual Synchronous Generator. <i>IEEE Transactions on Smart Grid</i> , 2021 , 12, 3138-3149	10.7	9
284	Stability Analysis and Robust Damping of Multiresonances in Distributed-Generation-Based Islanded Microgrids. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 8958-8970	8.9	9
283	Distributed noise-resilient economic dispatch strategy for islanded microgrids. <i>IET Generation, Transmission and Distribution</i> , 2019 , 13, 3029-3039	2.5	9
282	. IEEE Transactions on Sustainable Energy, 2019 , 10, 1554-1564	8.2	9
281	Fault location in microgrids: a communication-based high-frequency impedance approach. <i>IET Generation, Transmission and Distribution</i> , 2019 , 13, 1229-1237	2.5	9

280	Stability Enhancing Voltage Feed-Forward Inverter Control Method to Reduce the Effects of Phase-Locked Loop and Grid Impedance. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2021 , 9, 3000-3009	5.6	9
279	Nonlinear adaptive control design with average performance analysis for photovoltaic system based on half bridge shunt active power filter. <i>International Journal of Electrical Power and Energy Systems</i> , 2021 , 125, 106478	5.1	9
278	Modular multilevel converter based multi-terminal hybrid AC/DC microgrid with improved energy control method. <i>Applied Energy</i> , 2021 , 282, 116154	10.7	9
277	A Simple Method for Passivity Enhancement of Current Controlled Grid-Connected Inverters. <i>IEEE Transactions on Power Electronics</i> , 2020 , 35, 7735-7741	7.2	8
276	Autonomous active and reactive power distribution strategy in islanded microgrids 2014,		8
275	Multiagent based distributed control for operation cost minimization of droop controlled AC microgrid using incremental cost consensus 2015 ,		8
274	Model predictive control of smart microgrids 2014,		8
273	Hierarchical control scheme for voltage unbalance compensation in islanded microgrids 2011,		8
272	Analysis of Flux Density Bias and Digital Suppression Strategy for Single-Stage Power Factor Corrector Converter. <i>IEEE Transactions on Industrial Electronics</i> , 2008 , 55, 3077-3087	8.9	8
271	A Novel Smart Energy Management as a Service over a Cloud Computing Platform for Nanogrid Appliances. <i>Sustainability</i> , 2020 , 12, 9686	3.6	8
270	Grid code compatibility and real-time performance analysis of an efficient inverter topology for PV-based microgrid applications. <i>International Journal of Electrical Power and Energy Systems</i> , 2021 , 128, 106712	5.1	8
269	Analysis and distributed control of power flow in DC microgrids to improve system efficiency 2016 ,		8
268	Voltage unbalance and harmonic compensation in microgrids by cooperation of distributed generators and active power filters 2016 ,		8
267	Linear Time-Periodic Modeling, Examination, and Performance Enhancement of Grid Synchronization Systems With DC Component Rejection/Estimation Capability. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 4237-4253	7.2	8
266	2018,		8
265	Scheduling of Power Generation in Hybrid Shipboard Microgrids with Energy Storage Systems 2018		8
264	Optimal sizing and performance evaluation of a renewable energy based microgrid in future seaports 2018 ,		8
263	Power coordinated control method with frequency support capability for hybrid single/three-phase microgrid. <i>IET Generation, Transmission and Distribution</i> , 2018 , 12, 2397-2405	2.5	8

262	An economic customer-oriented demand response model in electricity markets 2018,		8
261	A comprehensive overview of framework for developing sustainable energy internet: From things-based energy network to services-based management system. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 150, 111409	16.2	8
2 60	Optimal location of an electrical vehicle charging station in a local microgrid using an embedded hybrid optimizer. <i>International Journal of Electrical Power and Energy Systems</i> , 2021 , 131, 106979	5.1	8
259	Hybrid automaton-fuzzy control of single phase dual buck half bridge shunt active power filter for shoot through elimination and power quality improvement. <i>International Journal of Electrical Power and Energy Systems</i> , 2021 , 131, 106986	5.1	8
258	. IEEE Transactions on Transportation Electrification, 2021 , 7, 3070-3082	7.6	8
257	Control of a multi-functional inverter for grid integration of PV and battery energy storage system 2015 ,		7
256	Designing high-order power-source synchronous current converters for islanded and grid-connected microgrids. <i>Applied Energy</i> , 2018 , 219, 370-384	10.7	7
255	Happiness is a hybrid - electric: A diesel-burning boat finds new life with a direct-current microgrid. <i>IEEE Spectrum</i> , 2019 , 56, 42-47	1.7	7
254	Microgrid reactive and harmonic power sharing using enhanced virtual impedance 2013,		7
253	An enhanced hierarchical control strategy for the Internet of Things-based home scale microgrid 2017 ,		7
252	Hybrid droop control strategy applied to grid-supporting converters in DC microgrids: Modeling, design and analysis 2017 ,		7
251	Dynamic evaluation of LCL-type grid-connected inverters with different current feedback control schemes 2015 ,		7
250	Stored energy balance for distributed PV-based active generators in an AC microgrid 2015,		7
249	Selective virtual capacitive impedance loop for harmonic voltage compensation in islanded MicroGrids 2013 ,		7
248	Microgrid Digital Twins: Concepts, Applications, and Future Trends. <i>IEEE Access</i> , 2022 , 10, 2284-2302	3.5	7
247	Photovoltaic power plants in electrical distribution networks: a review on their impact and solutions. <i>IET Renewable Power Generation</i> , 2020 , 14, 2114-2125	2.9	7
246	Energy Commitment for a Power System Supplied by Multiple Energy Carriers System using Following Optimization Algorithm. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 5862	2.6	7
245	A Novel Real-Time Electricity Scheduling for Home Energy Management System Using the Internet of Energy. <i>Energies</i> , 2021 , 14, 3191	3.1	7

244	Reliability enhancement and voltage profile improvement of distribution network using optimal capacity allocation and placement of distributed energy resources. <i>Computers and Electrical Engineering</i> , 2021 , 93, 107295	4.3	7
243	. IEEE Transactions on Power Delivery, 2020 , 35, 1379-1389	4.3	7
242	Inverter Parallelization for an Islanded Microgrid Using the Hopf Oscillator Controller Approach With Self-Synchronization Capabilities. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 68, 10879-1088	9 ^{8.9}	7
241	Distributed Control of Multi-Functional Grid-Tied Inverters for Power Quality Improvement. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2021 , 68, 918-928	3.9	7
240	Impedance Analysis and Stabilization of Virtual Synchronous Generators With Different DC-Link Voltage Controllers Under Weak Grid. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 11397-11408	7.2	7
239	Design of power quality enhanced sustainable bidirectional electric vehicle charging station in distribution grid. <i>Sustainable Cities and Society</i> , 2021 , 74, 103242	10.1	7
238	Decentralized transactive energy community in edge grid with positive buildings and interactive electric vehicles. <i>International Journal of Electrical Power and Energy Systems</i> , 2022 , 135, 107510	5.1	7
237	Cyber-Resilient Cooperative Control of DC Microgrid Clusters. <i>IEEE Systems Journal</i> , 2021 , 1-12	4.3	7
236	Adaptive LFC Incorporating Modified Virtual Rotor to Regulate Frequency and Tie-Line Power Flow in Multi-Area Microgrids. <i>IEEE Access</i> , 2022 , 10, 33248-33268	3.5	7
235	. IEEE Transactions on Industrial Electronics, 2017 , 64, 6265-6275	8.9	6
234	Dual-loop control strategy applied to PV/battery-based islanded DC microgrids for swarm electrification of developing regions. <i>Journal of Engineering</i> , 2019 , 2019, 5298-5302	0.7	6
233	State observer based capacitor-voltage-balancing method for modular multilevel converters without arm-current sensors. <i>International Journal of Electrical Power and Energy Systems</i> , 2019 , 113, 188-196	5.1	6
232	Small-signal modeling, analysis and testing of parallel three-phase-inverters with a novel autonomous current sharing controller 2015 ,		6
231	Stability analysis for isolated AC microgrids based on PV-active generators 2015 ,		6
230	. IEEE Transactions on Energy Conversion, 2018 , 33, 730-740	5.4	6
229	Multiple Second-Order Generalized Integrators Based Comb Filter for Fast Selective Harmonic Extraction 2019 ,		6
228	Generation and demand scheduling for a grid-connected hybrid microgrid considering price-based incentives 2017 ,		6
227	Hierarchical coordinated control of distributed generators and active power filters to enhance power quality of microgrids 2014 ,		6

226	Secondary control for voltage unbalance compensation in an islanded microgrid 2011,		6
225	A Novel Dynamic Appliance Clustering Scheme in a Community Home Energy Management System for Improved Stability and Resiliency of Microgrids. <i>IEEE Access</i> , 2021 , 9, 142276-142288	3.5	6
224	Detailed Operation Scheduling and Control for Renewable Energy Powered Microgrids. <i>Computer Aided Chemical Engineering</i> , 2011 , 29, 1819-1823	0.6	6
223	An iterative adaptive virtual impedance loop for reactive power sharing in islanded meshed microgrids. <i>Sustainable Energy, Grids and Networks</i> , 2020 , 24, 100395	3.6	6
222	Attack detection design for dc microgrid using eigenvalue assignment approach. <i>Energy Reports</i> , 2021 , 7, 469-476	4.6	6
221	Coordinated Demand Response and Distributed Generation Management in Residential Smart Microgrids 2016 ,		6
220	LTP Modeling of Single-Phase \$T/4\$ Delay-Based PLLs. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 68, 9003-9008	8.9	6
219	Enhanced Current-Limiting Droop Controller for Grid-Connected Inverters to Guarantee Stability and Maximize Power Injection Under Grid Faults. <i>IEEE Transactions on Control Systems Technology</i> , 2021 , 29, 841-849	4.8	6
218	Cyber Physical Energy Systems Modules for Power Sharing Controllers in Inverter Based Microgrids. <i>Inventions</i> , 2018 , 3, 66	2.9	6
217	More-Stable EPLL. <i>IEEE Transactions on Power Electronics</i> , 2022 , 37, 1003-1011	7.2	6
217	More-Stable EPLL. <i>IEEE Transactions on Power Electronics</i> , 2022 , 37, 1003-1011 Grid impedance estimation based hybrid islanding detection method for AC microgrids. <i>Mathematics and Computers in Simulation</i> , 2017 , 131, 142-156	7.2 3.3	5
	Grid impedance estimation based hybrid islanding detection method for AC microgrids.	,	
216	Grid impedance estimation based hybrid islanding detection method for AC microgrids. Mathematics and Computers in Simulation, 2017, 131, 142-156 Plug-and-play control and consensus algorithms for current sharing in DC microgrids.	3.3	5
216	Grid impedance estimation based hybrid islanding detection method for AC microgrids. Mathematics and Computers in Simulation, 2017, 131, 142-156 Plug-and-play control and consensus algorithms for current sharing in DC microgrids. IFAC-PapersOnLine, 2017, 50, 12440-12445	3.3	5
216 215 214	Grid impedance estimation based hybrid islanding detection method for AC microgrids. Mathematics and Computers in Simulation, 2017, 131, 142-156 Plug-and-play control and consensus algorithms for current sharing in DC microgrids. IFAC-PapersOnLine, 2017, 50, 12440-12445 Online energy management system for distributed generators in a grid-connected microgrid 2015, HIL-Assessed Fast and Accurate Single-Phase Power Calculation Algorithm for Voltage Source Inverters Supplying to High Total Demand Distortion Nonlinear Loads. Electronics (Switzerland),	3.3	555
216 215 214 213	Grid impedance estimation based hybrid islanding detection method for AC microgrids. Mathematics and Computers in Simulation, 2017, 131, 142-156 Plug-and-play control and consensus algorithms for current sharing in DC microgrids. IFAC-PapersOnLine, 2017, 50, 12440-12445 Online energy management system for distributed generators in a grid-connected microgrid 2015, HIL-Assessed Fast and Accurate Single-Phase Power Calculation Algorithm for Voltage Source Inverters Supplying to High Total Demand Distortion Nonlinear Loads. Electronics (Switzerland), 2020, 9, 1643 Decentralised non-linear IN droop control to improve current sharing and voltage restoration in	3.3	55555
216 215 214 213 212	Grid impedance estimation based hybrid islanding detection method for AC microgrids. Mathematics and Computers in Simulation, 2017, 131, 142-156 Plug-and-play control and consensus algorithms for current sharing in DC microgrids. IFAC-PapersOnLine, 2017, 50, 12440-12445 Online energy management system for distributed generators in a grid-connected microgrid 2015, HIL-Assessed Fast and Accurate Single-Phase Power Calculation Algorithm for Voltage Source Inverters Supplying to High Total Demand Distortion Nonlinear Loads. Electronics (Switzerland), 2020, 9, 1643 Decentralised non-linear IV droop control to improve current sharing and voltage restoration in DCNG clusters. IET Power Electronics, 2020, 13, 248-255 Constant power load instability mitigation in DC shipboard power systems using negative series	3.3	5 5 5 5

208	A novel grid impedance estimation technique based on adaptive virtual resistance control loop applied to distributed generation inverters 2013 ,		5
207	. IEEE Transactions on Power Electronics, 2010 , 25, 2885-2888	7.2	5
206	Selective compensation of voltage harmonics in an islanded microgrid 2011 ,		5
205	A Review of DC Shipboard Microgrids P art II: Control Architectures, Stability Analysis, and Protection Schemes. <i>IEEE Transactions on Power Electronics</i> , 2022 , 37, 4105-4120	7.2	5
204	Sustainable Rural Electrification Through Solar PV DC Microgrids An Architecture-Based Assessment. <i>Processes</i> , 2020 , 8, 1417	2.9	5
203	Dynamic Modeling of Multiple Microgrid Clusters Using Regional Demand Response Programs. <i>Energies</i> , 2020 , 13, 4050	3.1	5
202	Integrated Control and Protection Architecture for Islanded PV-Battery DC Microgrids: Design, Analysis and Experimental Verification. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 8847	2.6	5
201	Space Microgrids: New Concepts on Electric Power Systems for Satellites. <i>IEEE Electrification Magazine</i> , 2020 , 8, 8-19	2.6	5
200	. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2021 , 2, 122-131	2.6	5
199	MPC-informed ECMS based real-time power management strategy for hybrid electric ship. <i>Energy Reports</i> , 2021 , 7, 126-133	4.6	5
198	A hybrid algorithm for fault locating in looped microgrids 2016 ,		5
197	A Power Calculation Algorithm for Single-Phase Droop-Operated-Inverters Considering Linear and Nonlinear Loads HIL-Assessed. <i>Electronics (Switzerland)</i> , 2019 , 8, 1366	2.6	5
196	Cooperation of Voltage Controlled Active Power Filter with Grid-Connected DGs in Microgrid. <i>Sustainability</i> , 2019 , 11, 154	3.6	5
195	Coupling effect analysis and control for grid-connected multi-microgrid clusters. <i>IET Power Electronics</i> , 2020 , 13, 1059-1070	2.2	5
194	Comprehensive power flow modelling of hierarchically controlled AC/DC hybrid islanded microgrids. <i>International Journal of Electrical Power and Energy Systems</i> , 2021 , 127, 106629	5.1	5
193	Fault Management in DC Microgrids: A Review of Challenges, Countermeasures, and Future Research Trends. <i>IEEE Access</i> , 2021 , 9, 128032-128054	3.5	5
192	Inertia Response Coordination Strategy of Wind Generators and Hybrid Energy Storage and Operation Cost-Based Multi-Objective Optimizing of Frequency Control Parameters. <i>IEEE Access</i> , 2021 , 9, 74684-74702	3.5	5
191	Model Predictive-Based Direct Battery Control in PV Fed Quasi Z-Source Inverters 2018 ,		5

190	Modeling and Controls of Flywheel Energy Storage Systems for Energy Harvesting from Harbor Electrical Cranes 2018 ,		5
189	A Novel Power Sharing Scheme of Controlling Parallel-Operated Inverters in Islanded Microgrids. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2021 , 9, 5732-5746	5.6	5
188	Principle and Control Design of a Novel Hybrid Arc Suppression Device in Distribution Networks. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	5
187	Optimal Energy Management of a Campus Microgrid Considering Financial and Economic Analysis with Demand Response Strategies. <i>Energies</i> , 2021 , 14, 8501	3.1	5
186	Selective Sharing of Load Current Components Among Parallel Power Electronic Interfaces in Three-phase Four-wire Stand-alone Microgrid. <i>Electric Power Components and Systems</i> , 2017 , 45, 864-88	o ^t	4
185	Bumpless Optimal Control over Multi-Objective Microgrids with Mode-Dependent Controllers. <i>Energies</i> , 2019 , 12, 3619	3.1	4
184	Dominated GSO algorithm for optimal microgrid construction to improve consumer side properties in a distribution system. <i>International Journal of Electrical Power and Energy Systems</i> , 2020 , 123, 106232	5.1	4
183	New hybrid-microgrid topology using a bidirectional interleaved converter as a robust power interface operating in grid-connected and islanded modes. <i>IET Renewable Power Generation</i> , 2020 , 14, 134-144	2.9	4
182	Stabilization of DC Nanogrids Based on Non-Integer General Type-II Fuzzy System. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2020 , 67, 3108-3112	3.5	4
181	. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020 , 1-1	5.6	4
180	Power-Heat Generation Sources Planning in Microgrids to Enhance Resilience against Islanding due to Natural Disasters 2019 ,		4
179	Effective and low-cost passive compensator system to improve the power quality of two electric generators. <i>IET Power Electronics</i> , 2019 , 12, 1833-1840	2.2	4
178	Analysis, design, and experimental evaluation of power calculation in digital droop-controlled parallel microgrid inverters. <i>Journal of Zhejiang University: Science C</i> , 2013 , 14, 50-64		4
177	Combined solar charging stations and energy storage units allocation for electric vehicles by considering uncertainties 2017 ,		4
176	Specialized hierarchical control strategy for DC distribution based shipboard microgrids: A combination of emerging DC shipboard power systems and microgrid technologies 2017 ,		4
175	A secondary-control based fault current limiter for four-wire three phase inverter-interfaced DGs 2017 ,		4
174	Hybrid shipboard microgrids: System architectures and energy management aspects 2017,		4

172	Distributed low voltage ride-through operation of power converters in grid-connected microgrids under voltage sags 2015 ,		4
171	. IEEE Transactions on Power Electronics, 2008 , 23, 1038-1040	7.2	4
170	A Comprehensive Review of Control Strategies and Optimization Methods for Individual and Community Microgrids. <i>IEEE Access</i> , 2022 , 10, 15935-15955	3.5	4
169	Investment opportunities: Hydrogen production or BTC mining?. <i>International Journal of Hydrogen Energy</i> , 2022 , 47, 5733-5744	6.7	4
168	LTP Modeling and Stability Assessment of Multiple Second-Order Generalized Integrator-Based Signal Processing/Synchronization Algorithms and Their Close Variants. <i>IEEE Transactions on Power Electronics</i> , 2022 , 37, 5062-5077	7.2	4
167	An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring. <i>Applied Energy</i> , 2021 , 307, 118136	10.7	4
166	A Resolution-Enhanced Sliding Matrix Pencil Method for Evaluation of Harmonics Distortion in Shipboard Microgrids. <i>IEEE Transactions on Transportation Electrification</i> , 2020 , 6, 1290-1300	7.6	4
165	A new voltage regulation strategy using developed power sharing techniques for solar photovoltaic generation-based microgrids. <i>Electrical Engineering</i> ,1	1.5	4
164	A new hybrid virtual synchronous machine control structure combined with voltage source converters in islanded ac microgrids. <i>Electric Power Systems Research</i> , 2021 , 193, 106976	3.5	4
163	An Accurate Physical Model for PV Modules With Improved Approximations of Series-Shunt Resistances. <i>IEEE Journal of Photovoltaics</i> , 2021 , 11, 699-707	3.7	4
162	AC vs. DC Distribution Efficiency: Are We on the Right Path?. Energies, 2021, 14, 4039	3.1	4
161	A Novel Internet of Energy Based Optimal Multi-Agent Control Scheme for Microgrid including Renewable Energy Resources. <i>International Journal of Environmental Research and Public Health</i> , 2021 , 18,	4.6	4
160	Cooperative management for a cluster of residential prosumers 2016,		4
159	Hybrid Model Predictive Control for Modified Modular Multilevel Switch-Mode Power Amplifier. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 5302-5322	7.2	4
158	FLLs in Electrical Power & Energy Systems: Equivalent or Different to PLLs?. <i>IEEE Industrial Electronics Magazine</i> , 2021 , 0-0	6.2	4
157	Passivity Enhancement of Voltage-Controlled Inverters in Grid-Connected Microgrids Considering Negative Aspects of Control Delay and Grid Impedance Variations. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2021 , 1-1	5.6	4
156	. IEEE Access, 2021 , 9, 2382-2389	3.5	4
155	Stochastic Frequency-Security Constrained Scheduling of a Microgrid Considering Price-Driven Demand Response 2018 ,		4

154	Hardy space nonlinear controller design for DC microgrid with constant power loads. <i>International Journal of Electrical Power and Energy Systems</i> , 2021 , 133, 107300	5.1	4
153	Review of Power Quality Issues in Maritime Microgrids. <i>IEEE Access</i> , 2021 , 9, 81798-81817	3.5	4
152	Towards collective energy Community: Potential roles of microgrid and blockchain to go beyond P2P energy trading. <i>Applied Energy</i> , 2022 , 314, 119003	10.7	4
151	The concept of direct adaptive control for improving voltage and frequency regulation loops in several power system applications. <i>International Journal of Electrical Power and Energy Systems</i> , 2022 , 140, 108068	5.1	4
150	A harmonic current suppression control strategy for droop-controlled inverter connected to the distorted grid 2015 ,		3
149	Phase-lock loop of Grid-connected Voltage Source Converter under non-ideal grid condition 2015 ,		3
148	A hierarchical control scheme for reactive power and harmonic current sharing in islanded microgrids 2015 ,		3
147	Model predictive control of direct-drive wave power generation system connected to DC microgrid through DC cable. <i>International Transactions on Electrical Energy Systems</i> , 2020 , 30, etep12484	2.2	3
146	Enhanced Intelligent Energy Management System for a Renewable Energy-Based AC Microgrid. <i>Energies</i> , 2020 , 13, 3268	3.1	3
145	Tertiary control for optimal unbalance compensation in islanded microgrids 2014,		3
144	Control and analysis of droop and reverse droop controllers for distributed generations 2014,		3
143	Real-time reactive power distribution in microgrids by dynamic programing. <i>IET Generation, Transmission and Distribution</i> , 2017 , 11, 530-539	2.5	3
142	A proportional harmonic power sharing scheme for hierarchical controlled microgrids considering unequal feeder impedances and nonlinear loads 2017 ,		3
141	Dynamics assessment of grid-synchronization algorithms for single-phase grid-connected converters 2015 ,		3
140	Equalization algorithm for distributed energy storage systems in islanded AC microgrids 2015,		3
139	Dynamic consensus algorithm based distributed voltage harmonic compensation in islanded microgrids 2015 ,		3
138	A new virtual-flux-vector based droop control strategy for parallel connected inverters in microgrids 2013 ,		3
137	Optimal Configuration and Sizing of Seaport Microgrids including Renewable Energy and Cold IroningThe Port of Aalborg Case Study. <i>Energies</i> , 2022 , 15, 431	3.1	3

136	False Data Injection Cyber-Attacks Detection for Multiple DC Microgrid Clusters. <i>Applied Energy</i> , 2022 , 310, 118425	10.7	3
135	Unified decentralised control for both grid-connected and islanded operation of cascaded-type microgrid. <i>IET Renewable Power Generation</i> , 2020 , 14, 3138-3148	2.9	3
134	Hybrid islanding detection technique for single-phase grid-connected photovoltaic multi-inverter systems. <i>IET Renewable Power Generation</i> , 2020 , 14, 3864-3880	2.9	3
133	A Deep Learning Method for Short-Term Dynamic Positioning Load Forecasting in Maritime Microgrids. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 4889	2.6	3
132	2020,		3
131	Optimum Sizing of Photovoltaic and Energy Storage Systems for Powering Green Base Stations in Cellular Networks. <i>Energies</i> , 2021 , 14, 1895	3.1	3
130	A Robust Method for Controlling Grid-Connected Inverters in Weak Grids. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2021 , 68, 1333-1337	3.5	3
129	. IEEE Transactions on Industry Applications, 2021 , 57, 2838-2849	4.3	3
128	Hierarchical Control of Space Closed Ecosystems: Expanding Microgrid Concepts to Bioastronautics. <i>IEEE Industrial Electronics Magazine</i> , 2021 , 15, 16-27	6.2	3
127	2016,		3
127 126	Decentralized method for load sharing and power management in a hybrid single/three-phase islanded microgrid consisting of hybrid source PV/battery units 2016,		3
	Decentralized method for load sharing and power management in a hybrid single/three-phase		
126	Decentralized method for load sharing and power management in a hybrid single/three-phase islanded microgrid consisting of hybrid source PV/battery units 2016 ,		3
126	Decentralized method for load sharing and power management in a hybrid single/three-phase islanded microgrid consisting of hybrid source PV/battery units 2016 , Adaptive overcurrent protection for microgrids in extensive distribution systems 2016 ,	5.1	3
126 125 124	Decentralized method for load sharing and power management in a hybrid single/three-phase islanded microgrid consisting of hybrid source PV/battery units 2016, Adaptive overcurrent protection for microgrids in extensive distribution systems 2016, Design of Space Microgrid for Manned Lunar Base: Spinning-in Terrestrial Technologies 2019, Analysis and optimization of hybrid modular multilevel converters under over-modulation	5.1	3 3
126 125 124	Decentralized method for load sharing and power management in a hybrid single/three-phase islanded microgrid consisting of hybrid source PV/battery units 2016, Adaptive overcurrent protection for microgrids in extensive distribution systems 2016, Design of Space Microgrid for Manned Lunar Base: Spinning-in Terrestrial Technologies 2019, Analysis and optimization of hybrid modular multilevel converters under over-modulation conditions. International Journal of Electrical Power and Energy Systems, 2020, 116, 105578 Cyberattack Detection for Converter-Based Distributed dc Microgrids: Observer-Based		3 3 3
126 125 124 123	Decentralized method for load sharing and power management in a hybrid single/three-phase islanded microgrid consisting of hybrid source PV/battery units 2016, Adaptive overcurrent protection for microgrids in extensive distribution systems 2016, Design of Space Microgrid for Manned Lunar Base: Spinning-in Terrestrial Technologies 2019, Analysis and optimization of hybrid modular multilevel converters under over-modulation conditions. International Journal of Electrical Power and Energy Systems, 2020, 116, 105578 Cyberattack Detection for Converter-Based Distributed dc Microgrids: Observer-Based Approaches. IEEE Industrial Electronics Magazine, 2021, 2-12 Analysing integration issues of the microgrid system with utility grid network. International Journal	6.2	3 3 3 3

(2020-2021)

118	Space Microgrids for Future Manned Lunar Bases: A Review. <i>IEEE Open Access Journal of Power and Energy</i> , 2021 , 1-1	3.8	3
117	Recent Trends, Challenges, and Future Aspects of P2P Energy Trading Platforms in Electrical-Based Networks Considering Blockchain Technology: A Roadmap Toward Environmental Sustainability. <i>Frontiers in Energy Research</i> , 2022 , 10,	3.8	3
116	A Reference-Feedforward-Based Damping Method for Virtual Synchronous Generator Control. <i>IEEE Transactions on Power Electronics</i> , 2022 , 37, 7566-7571	7.2	3
115	P2P energy trading: Blockchain-enabled P2P energy society with multi-scale flexibility services. <i>Energy Reports</i> , 2022 , 8, 3614-3628	4.6	3
114	Optimal Load and Energy Management of Aircraft Microgrids Using Multi-Objective Model Predictive Control. <i>Sustainability</i> , 2021 , 13, 13907	3.6	3
113	. IEEE Transactions on Smart Grid, 2019 , 10, 6898-6911	10.7	2
112	Mode-dependent seamless transfer control strategy of a microgrid via a small-signal stability approach. <i>Asian Journal of Control</i> , 2019 , 21, 2087-2104	1.7	2
111	Secondary-control-based harmonics compensation scheme for voltage- and current-controlled inverters in islanded microgrids. <i>IET Renewable Power Generation</i> , 2020 , 14, 2176-2182	2.9	2
110	Maritime DC microgrids - a combination of microgrid technologies and maritime onboard power system for future ships 2016 ,		2
109	A Reactive Power-Voltage Control Strategy of an AC Microgrid Based on Adaptive Virtual Impedance. <i>Energies</i> , 2019 , 12, 3057	3.1	2
108	A fuzzy-based hybrid PLL scheme for abnormal grid conditions 2015 ,		2
107	. IEEE Transactions on Industrial Electronics, 2008 , 55, 2842-2844	8.9	2
106	Effect of Battery Degradation on the Probabilistic Optimal Operation of Renewable-Based Microgrids. <i>Electricity</i> , 2022 , 3, 53-74	1	2
105	Energy management system for a hybrid PV-Wind-Tidal-Battery-based islanded DC microgrid: Modeling and experimental validation. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 159, 112093	16.2	2
104	DC-Link Voltage Control Aided for the Inertial Support During Severe Faults in Weak Grids. <i>IEEE Journal of Emerging and Selected Topics in Power Electronics</i> , 2020 , 1-1	5.6	2
103	A Comparison of Fixed-Parameter Active-Power-Oscillation Damping Solutions for Virtual Synchronous Generators 2021 ,		2
102	A Review of the Conceptualization and Operational Management of Seaport Microgrids on the Shore and Seaside. <i>Energies</i> , 2021 , 14, 7941	3.1	2
101	A Decentralized Control Scheme for Adaptive Power-Sharing in Ships based Seaport Microgrid. 2020 ,		2

100	2020,		2
99	Harmonics Mitigation in Hybrid AC/DC Shipboard Microgrids Using Fixed Capacitor-Thyristor Controlled Reactors 2020 ,		2
98	Research on Synchronverter-Based Regenerative Braking Energy Feedback System of Urban Rail Transit. <i>Energies</i> , 2020 , 13, 4418	3.1	2
97	A Very Short-Term Probabilistic Prediction Interval Forecaster for Reducing Load Uncertainty Level in Smart Grids. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 2538	2.6	2
96	A modified indirect extraction method for a single-phase shunt active power filter with smaller DC-link capacitor size. <i>Sustainable Energy Technologies and Assessments</i> , 2021 , 45, 101039	4.7	2
95	A Riding-through Technique for Seamless Transition between Islanded and Grid-Connected Modes of Droop-Controlled Inverters. <i>Energies</i> , 2016 , 9, 732	3.1	2
94	2016,		2
93	Stability Improvement of Converter-side Current Controlled Grid-Connected Inverters 2019,		2
92	Flatness-Based Decentralized Control of Bidirectional Interlink Power Converters in Grid-Connected Hybrid Microgrids Using Adaptive High-Gain PI-Observer. <i>IEEE Systems Journal</i> , 2021 , 15, 478-486	4.3	2
91	Voltage and Frequency Consensusability of Autonomous Microgrids Over Fading Channels. <i>IEEE Transactions on Energy Conversion</i> , 2021 , 36, 149-158	5.4	2
90	Active resonance damping and harmonics compensation in distributed generation based islanded microgrids. <i>Electric Power Systems Research</i> , 2021 , 191, 106900	3.5	2
89	Robust Frequency Control in Interconnected Microgrids: An H\$_2\$/H\$_{infty}\$ Control Approach. <i>IEEE Systems Journal</i> , 2021 , 1-12	4.3	2
88	Morphological PLL for potential applications on renewable energy. <i>Electric Power Systems Research</i> , 2018 , 156, 15-23	3.5	2
87	Plug-and-Play Voltage/Current Stabilization DC Microgrid Clusters with Grid-Forming/Feeding Converters 2018 ,		2
86	Message Queuing Telemetry Transport Communication Infrastructure for Grid-Connected AC Microgrids Management. <i>Energies</i> , 2021 , 14, 5610	3.1	2
85	Consensus Algorithm-based Coalition Game Theory for Demand Management Scheme in Smart Microgrid. Sustainable Cities and Society, 2021 , 74, 103248	10.1	2
84	Improved direct model predictive control for variable magnitude variable frequency wave energy converter connected to constant power load. <i>Journal of Energy Storage</i> , 2021 , 43, 103175	7.8	2
83	Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control. <i>Energy</i> , 2022 , 239, 122116	7.9	2

(2021-2022)

82	An Adaptive Dynamic Reference Control for Power Converters in a Microgrid. <i>IEEE Transactions on Power Electronics</i> , 2022 , 1-1	7.2	2
81	Using PV systems and parking lots to provide virtual inertia and frequency regulation provision in low inertia grids. <i>Electric Power Systems Research</i> , 2022 , 207, 107859	3.5	2
80	Smart Microgrid Integration and Optimization 2021 , 201-235		2
79	A Comprehensive Review on Small Satellite Microgrids. <i>IEEE Transactions on Power Electronics</i> , 2022 , 1-1	7.2	2
78	Microgrid optimal energy and reserve scheduling considering frequency constraints 2019,		1
77	Active power regulation based on droop for AC microgrid 2015 ,		1
76	Modeling and Tuning of Adaptive Complex Current Controller for Three-Phase Grid-Interfaced Power Converters 2019 ,		1
75	A Novel Compact dq-Reference Frame Model for Inverter-Based Microgrids. <i>Electronics</i> (Switzerland), 2019 , 8, 1326	2.6	1
74	A control scheme to improve the power quality with the absence of dedicated compensation devices in microgrid 2015 ,		1
73	Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application. <i>Energies</i> , 2017 , 10, 50	3.1	1
72	Improving the voltage quality of an inverter via by-passing the harmonic current components 2012,		1
71	Voltage quality improvement in islanded microgrids supplying nonlinear loads 2012,		1
70	Supervisory Control for Real Time Reactive Power Flow Optimization in Islanded Microgrids. <i>Computer Aided Chemical Engineering</i> , 2013 , 325-330	0.6	1
69	Resonant current regulation for transformerless hybrid active filter to suppress harmonic resonances in industrial power systems 2010 ,		1
68	An IoT Platform-based Multi-objective Energy Management System for Residential Microgrids 2020 ,		1
67	Dynamic voltage restore based on switched-capacitor multilevel inverter with ability to compensate for voltage drop, harmonics, and unbalancing simultaneously. <i>Electric Power Systems Research</i> , 2022 , 207, 107826	3.5	1
66	A Novel Droop Control Strategy of Reactive Power Sharing Based on Adaptive Virtual Impedance in Microgrids. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	1
65	Modified Virtual Inertia Mechanism Based ESS for A real Multi-Source Power System Application: the Egyptian Grid 2021 ,		1

64	Optimum Sizing of Photovoltaic-Battery Power Supply for Drone-Based Cellular Networks. <i>Drones</i> , 2021 , 5, 138	5.4	1
63	An Integrated Synchronization and Control Strategy for Parallel-Operated Inverters Based on VII Droop Characteristics. <i>IEEE Transactions on Power Electronics</i> , 2021 , 1-1	7.2	1
62	A Frequency Independent Technique to Estimate Harmonics and Interharmonics in Shipboard Microgrids. <i>IEEE Transactions on Smart Grid</i> , 2021 , 1-1	10.7	1
61	Stability of microgrid cluster with Diverse Energy Sources: A multi-objective solution using NSGA-II based controller. <i>Sustainable Energy Technologies and Assessments</i> , 2022 , 50, 101834	4.7	1
60	Scalable architecture of DC microgrid implemented with multi-input multi-output converter. <i>IET Power Electronics</i> , 2020 , 13, 4480-4489	2.2	1
59	Optimal SSSC-based power damping inter-area oscillations using firefly and harmony search algorithms. <i>Scientific Reports</i> , 2020 , 10, 12176	4.9	1
58	Energy Management System for an Islanded Renewables-based DC Microgrid 2020 ,		1
57	A dynamic consensus algorithm based low-voltage ride-through operation of power converters in grid-interactive microgrids 2016 ,		1
56	Hybrid Energy Storage Systems for Voltage Stabilization in Shipboard Microgrids 2019,		1
55	Open IoT Infrastructures for In-Home Energy Management and Control 2019 ,		1
54	An Enhanced Power Decoupling Control for Grid-connected Capacitive-Coupling Inverters 2019,		1
53	. IEEE Transactions on Power Electronics, 2021 , 36, 5582-5593	7.2	1
52	Wavelet-Based Frequency Tracking Monitor Applied for Low-Inertia AC Microgrids. <i>IEEE Transactions on Power Electronics</i> , 2021 , 36, 6674-6684	7.2	1
51	An Effective Algorithm for MAED Problems with a New Reliability Model at the Microgrid. <i>Electronics (Switzerland)</i> , 2021 , 10, 257	2.6	1
50	. IEEE Access, 2021 , 9, 108754-108771	3.5	1
49	A Cost-Effective Decentralized Control for AC-Stacked Photovoltaic Inverters. <i>Energies</i> , 2018 , 11, 2262	3.1	1
48	Optimal Design and Operation Management of Battery-Based Energy Storage Systems (BESS) in Microgrids 2018 ,		1
47	Modeling of complex resonances in islanded Microgrids 2018,		1

46	Stochastic Predictive Control of Multi-Microgrid Systems 2018 ,		1
45	Compensation of distortions in VSC-based DCAC power systems using a modified vector control method. <i>Control Engineering Practice</i> , 2021 , 114, 104864	3.9	1
44	Coordinated Control of Diesel Generators and Batteries in DC Hybrid Electric Shipboard Power System. <i>Energies</i> , 2021 , 14, 6246	3.1	1
43	Adaptive Power Management of Hierarchical Controlled Hybrid Shipboard Microgrids. <i>IEEE Access</i> , 2022 , 10, 21397-21411	3.5	1
42	Electric Vehicle Charging Load Allocation at Residential Locations Utilizing the Energy Savings Gained by Optimal Network Reconductoring. <i>Smart Cities</i> , 2022 , 5, 177-205	3.3	1
41	Marketability analysis of green hydrogen production in Denmark: Scale-up effects on grid-connected electrolysis. <i>International Journal of Hydrogen Energy</i> , 2022 , 47, 12443-12455	6.7	1
40	Event-triggered distributed voltage regulation by heterogeneous BESS in low-voltage distribution networks. <i>Applied Energy</i> , 2022 , 312, 118597	10.7	1
39	Distributed event-triggered average consensus control strategy with fractional-order local controllers for DC microgrids. <i>Electric Power Systems Research</i> , 2022 , 207, 107791	3.5	1
38	An adaptive backstepping control to ensure the stability and robustness for boost power converter in DC microgrids. <i>Energy Reports</i> , 2022 , 8, 1110-1124	4.6	1
37	Electric cars, ships, and their charging infrastructure 🛭 comprehensive review. <i>Sustainable Energy Technologies and Assessments</i> , 2022 , 52, 102177	4.7	1
36	A novel continuous control set model predictive control to guarantee stability and robustness for buck power converter in DC microgrids. <i>Energy Reports</i> , 2021 , 7, 1400-1415	4.6	1
35	A novel modulation for Adaptive Control Issue-Based Optimization Techniques: Balloon Effect 2021 ,		1
34	Power-flow-based energy management of hierarchically controlled islanded AC microgrids. <i>International Journal of Electrical Power and Energy Systems</i> , 2022 , 141, 108140	5.1	1
33	Stochastic Optimal Strategy for Power Management in Interconnected Multi-Microgrid Systems. <i>Electronics (Switzerland)</i> , 2022 , 11, 1424	2.6	1
32	A distributed real-time power management scheme for shipboard zonal multi-microgrid system. <i>Applied Energy</i> , 2022 , 317, 119072	10.7	1
31	Experiments on a Real-Time Energy Management System for Islanded Prosumer Microgrids. <i>Electronics (Switzerland)</i> , 2019 , 8, 925	2.6	O
30	Active arc suppression device based on voltage-source convertor with consideration of line impedance in distribution networks. <i>IET Power Electronics</i> , 2021 , 14, 2585	2.2	O
29	LoRa Enabled Smart Inverters for Microgrid Scenarios with Widespread Elements. <i>Electronics</i> (Switzerland), 2021 , 10, 2680	2.6	О

28	Novel modular multilevel converter-based five-terminal MV/LV hybrid AC/DC microgrids with improved operation capability under unbalanced power distribution. <i>Applied Energy</i> , 2022 , 306, 118140	10.7	O
27	Power quality assessment using signal periodicity independent algorithms IA shipboard microgrid case study. <i>Applied Energy</i> , 2021 , 307, 118151	10.7	O
26	Distributed Dynamic Event-triggered Control for Accurate Active and Harmonic Power Sharing in Modular On-line UPS Systems. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 1-1	8.9	0
25	Stochastic optimal power flow in islanded DC microgrids with correlated load and solar PV uncertainties. <i>Applied Energy</i> , 2022 , 307, 118090	10.7	O
24	A Cost-Effective Disturbance Governance Framework for Low-Inertia Autonomous Microgrids. Sustainable Energy Technologies and Assessments, 2021 , 48, 101640	4.7	0
23	First-order integral switching surface sliding-mode control method of active front end rectifier for fast charger applications. <i>IET Power Electronics</i> , 2020 , 13, 3900-3909	2.2	О
22	Precise current sharing and decentralized power management schemes based on virtual frequency droop method for LVDC microgrids. <i>International Journal of Electrical Power and Energy Systems</i> , 2022 , 136, 107708	5.1	0
21	Trade-off design of positive-feedback based islanding detection. <i>International Transactions on Electrical Energy Systems</i> , 2020 , 30, e12654	2.2	Ο
20	. IEEE Transactions on Power Electronics, 2021 , 36, 6685-6698	7.2	0
19	AC Microgrids Protection: A Digital Coordinated Adaptive Scheme. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 7066	2.6	O
18	Linear Quadratic Regulator based Smooth Transition between Microgrid Operation Modes. <i>IEEE Transactions on Smart Grid</i> , 2021 , 1-1	10.7	0
17	Logarithmic droop-based decentralized control of parallel converters for accurate current sharing in islanded DC microgrid applications. <i>IET Renewable Power Generation</i> , 2021 , 15, 1240-1254	2.9	O
16	Adaptive Multi-objective Sliding Mode Control of a Wind Energy Conversion System Involving Doubly Fed Induction Generator for Power Capture Optimization. <i>Journal of Control, Automation and Electrical Systems</i> , 2021 , 32, 1663	1.5	0
15	A Novel Circulating Current Suppression for Paralleled Current Source Converter Based on Virtual Impedance Concept. <i>Energies</i> , 2022 , 15, 1952	3.1	O
14	Stability Boundary Analysis of Islanded Droop-Based Microgrids Using an Autonomous Shooting Method. <i>Energies</i> , 2022 , 15, 2120	3.1	O
13	A comprehensive review on telecommunication challenges of microgrids secondary control. <i>International Journal of Electrical Power and Energy Systems</i> , 2022 , 140, 108081	5.1	O
12	A robust passivity based model predictive control for buck converter suppling constant power load. <i>Energy Reports</i> , 2021 , 7, 792-813	4.6	0
11	Control Algorithms for Energy Storage Systems to Reduce Distribution Power Loss of Microgrids 2021 , 237-259		O

Active Management of Distribution Networks **2021**, 155-176

9	Hierarchically controlled ecological life support systems. <i>Computers and Chemical Engineering</i> , 2022 , 157, 107625	4
8	Directional element for faulty feeder identification of high-resistance fault in high-surety power supply systems. <i>IET Generation, Transmission and Distribution</i> , 2021 , 15, 45-55	2.5
7	Multifunctional UPQC operating as an interface converter between hybrid AC-DC microgrids and utility grids. <i>International Journal of Electrical Power and Energy Systems</i> , 2022 , 136, 107638	5.1
6	Closure to Discussion on D ecentralized Optimal Frequency Control in Autonomous Microgrids <i>IEEE Transactions on Power Systems</i> , 2020 , 35, 4973-4973	7
5	Voltage Unbalance Compensation in AC Microgrids. <i>Power Systems</i> , 2021 , 337-373	0.4
4	Independent predictive control with current limiting capability of three-phase four-leg inverter-interfaced isolated microgrids. <i>International Journal of Electrical Power and Energy Systems</i> , 2022 , 134, 107457	5.1
3	Higher Levels of Wind Energy Penetration into the Remote Grid 2021 , 261-277	
2	An enhanced fast fundamental frequency estimator for three-phase electric aircraft grid. <i>Measurement: Journal of the International Measurement Confederation</i> , 2022 , 196, 111142	4.6
1	Electrical distribution network: Existing problems 2022 , 17-26	

О