
Youngeun Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10984328/publications.pdf Version: 2024-02-01

YOUNCEUN JUNC

#	Article	IF	CITATIONS
1	Global profiling of distinct cysteine redox forms reveals wide-ranging redox regulation in C. elegans. Nature Communications, 2021, 12, 1415.	12.8	62
2	Endogenous SO2-dependent Smad3 redox modification controls vascular remodeling. Redox Biology, 2021, 41, 101898.	9.0	22
3	Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration. Cell Metabolism, 2019, 30, 1152-1170.e13.	16.2	236
4	Fluorescent 1,4-Naphthoquinones To Visualize Diffuse and Dense-Core Amyloid Plaques in APP/PS1 Transgenic Mouse Brains. ACS Chemical Neuroscience, 2019, 10, 3031-3044.	3.5	14
5	Mitochondria-targeting indolizino[3,2-c]quinolines as novel class of photosensitizers for photodynamic anticancer activity. European Journal of Medicinal Chemistry, 2018, 148, 116-127.	5.5	50
6	Chemical proteomics reveals new targets of cysteine sulfinic acid reductase. Nature Chemical Biology, 2018, 14, 995-1004.	8.0	173
7	Total Syntheses of Urgineanins A, B, D, and Their Analogues. Synthesis, 2017, 49, 1531-1537.	2.3	6
8	Indolizino[3,2-c]quinolines as environment-sensitive fluorescent light-up probes for targeted live cell imaging. Sensors and Actuators B: Chemical, 2017, 252, 340-352.	7.8	13
9	Catalyst-free synthesis of 4-alkynylazobenzenes from quinols. Tetrahedron Letters, 2017, 58, 1590-1591.	1.4	4
10	Diversity-oriented functionalization of indolizines at the C3 position via multicomponent Kabachnik-Fields reaction. Tetrahedron, 2017, 73, 5759-5768.	1.9	10
11	Symmetry-based approach to oligostilbenoids: Rapid entry to viniferifuran, shoreaphenol, malibatol A, and diptoindonesin G. Beilstein Journal of Organic Chemistry, 2016, 12, 2689-2693.	2.2	8
12	Syntheses of pterocarpenes and coumestans via regioselective cyclodehydration. Organic and Biomolecular Chemistry, 2016, 14, 8074-8087.	2.8	21
13	Synthesis of 6â€Arylâ€5â€iodobenzo[<i>e</i>]pyrido[1,2â€ <i>a</i>]indoles by 6â€ <i>endo</i> â€ <i>dig</i> lodocyclization. Asian Journal of Organic Chemistry, 2016, 5, 147-152.	2.7	13
14	Chemoselective reduction of quinols as an alternative to Sonogashira coupling: synthesis of polysubstituted benzofurans. Organic and Biomolecular Chemistry, 2016, 14, 10454-10472.	2.8	15
15	Synthesis, characterization and biological evaluation of anti-cancer indolizine derivatives via inhibiting β-catenin activity and activating p53. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 110-113.	2.2	36
16	Reciprocal Regulation of ERÎ \pm and ERÎ 2 Stability and Activity by Diptoindonesin G. Chemistry and Biology, 2015, 22, 1608-1621.	6.0	33
17	Total Synthesis of Brazilin. Journal of Organic Chemistry, 2015, 80, 2001-2005.	3.2	44
18	A concise synthetic approach to brazilin via Pd-catalyzed allylic arylation. Organic and Biomolecular Chemistry, 2015, 13, 4331-4335.	2.8	12

YOUNGEUN JUNG

#	Article	IF	CITATIONS
19	C3 functionalization of indolizines via In(<scp>iii</scp>)-catalyzed three-component reaction. Organic and Biomolecular Chemistry, 2015, 13, 10986-10994.	2.8	30
20	Deformylative Intramolecular Hydroarylation: Synthesis of Benzo[e]pyrido[1,2-a]indoles. Organic Letters, 2015, 17, 4600-4603.	4.6	38
21	Mollugin from Rubea cordifolia suppresses receptor activator of nuclear factor-l [®] B ligand-induced osteoclastogenesis and bone resorbing activity in vitro and prevents lipopolysaccharide-induced bone loss in vivo. Phytomedicine, 2015, 22, 27-35.	5.3	23
22	Diversity-oriented decoration of pyrrolo[1,2-a]pyrazines. Tetrahedron, 2014, 70, 7534-7550.	1.9	39
23	Domino Knoevenagel Condensation/Intramolecular Aldol Cyclization Route to Diverse Indolizines with Densely Functionalized Pyridine Units. Journal of Organic Chemistry, 2013, 78, 10395-10404.	3.2	69
24	Facile approach to diverse 3-acylated indolizines via a sequential Sonogashira coupling/iodocyclization process. Tetrahedron, 2012, 68, 8198-8206.	1.9	28