Keigo Nitadori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10983456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Step-size effect in the time-transformed leapfrog integrator on elliptic and hyperbolic orbits. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4384-4389.	4.4	1
2	A slow-down time-transformed symplectic integrator for solving the few-body problem. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3398-3411.	4.4	27
3	Implementation and performance of Barnes-hut n-body algorithm on extreme-scale heterogeneous many-core architectures. International Journal of High Performance Computing Applications, 2020, 34, 615-628.	3.7	4
4	petar: a high-performance N-body code for modelling massive collisional stellar systems. Monthly Notices of the Royal Astronomical Society, 2020, 497, 536-555.	4.4	52
5	Accelerated FDPS: Algorithms to use accelerators with FDPS. Publication of the Astronomical Society of Japan, 2020, 72, .	2.5	16
6	A Mean-field Approach to Simulating the Merging of Collisionless Stellar Systems Using a Particle-based Method. Astrophysical Journal, 2019, 875, 20.	4.5	1
7	Fortran interface layer of the framework for developing particle simulator FDPS. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	24
8	Global Simulation of Planetary Rings on Sunway TaihuLight. Lecture Notes in Computer Science, 2018, , 483-495.	1.3	5
9	Unconvergence of very-large-scale giant impact simulations. Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	40
10	Implementation and performance of FDPS: a framework for developing parallel particle simulation codes. Publication of the Astronomical Society of Japan, 2016, 68, .	2.5	94
11	FDPS., 2015,,.		5
12	nbody6++gpu: ready for the gravitational million-body problem. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4070-4080.	4.4	167
13	Merging of unequal mass binary black holes in non-axisymmetric galactic nuclei. Proceedings of the International Astronomical Union, 2014, 10, 82-85.	0.0	Ο
14	Acceleration of hybrid MPI parallel NBODY6++ for large N-body globular cluster simulations. Proceedings of the International Astronomical Union, 2014, 10, 260-261.	0.0	0
15	Phantom-GRAPE: Numerical software library to accelerate collisionless N-body simulation with SIMD instruction set on x86 architecture. New Astronomy, 2013, 19, 74-88.	1.8	45
16	THE COSMOGRID SIMULATION: STATISTICAL PROPERTIES OF SMALL DARK MATTER HALOS. Astrophysical Journal, 2013, 767, 146.	4.5	76
17	Up to 700k GPU Cores, Kepler, and the Exascale Future for Simulations of Star Clusters Around Black Holes. Lecture Notes in Computer Science, 2013, , 13-25.	1.3	6
18	FORMATION AND HARDENING OF SUPERMASSIVE BLACK HOLE BINARIES IN MINOR MERGERS OF DISK GALAXIES. Astrophysical Journal, 2012, 756, 30.	4.5	49

KEIGO NITADORI

#	Article	IF	CITATIONS
19	4.45 Pflops astrophysical N-body simulation on K computer The gravitational trillion-body problem. , 2012, , .		27
20	N-body simulation for self-gravitating collisional systems with a new SIMD instruction set extension to the x86 architecture, Advanced Vector eXtensions. New Astronomy, 2012, 17, 82-92.	1.8	43
21	Accelerating nbody6 with graphics processing units. Monthly Notices of the Royal Astronomical Society, 2012, 424, 545-552.	4.4	214
22	Simulating the Universe on an Intercontinental Grid. Computer, 2010, 43, 63-70.	1.1	16
23	42 TFlops hierarchical <i>N</i> -body simulations on GPUs with applications in both astrophysics and turbulence. , 2009, , .		65
24	AÂnovel multiple-walk parallel algorithm for the Barnes–Hut treecode on GPUs – towards cost effective, high performance N-body simulation. Computer Science - Research and Development, 2009, 24, 21-31.	2.7	22
25	Sixth- and eighth-order Hermite integrator for N-body simulations. New Astronomy, 2008, 13, 498-507.	1.8	92
26	619 Accelerating collisionless N-body simulation using GPUs. The Proceedings of the Computational Mechanics Conference, 2008, 2008.21, 548-549.	0.0	0
27	6th and 8th Order Hermite Integrator Using Snap and Crackle. Proceedings of the International Astronomical Union, 2007, 3, 473-474.	0.0	0
28	Performance tuning of N-body codes on modern microprocessors: I. Direct integration with a hermite scheme on x86_64 architecture. New Astronomy, 2006, 12, 169-181.	1.8	44