Ken-Ichiro Katsura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10983170/publications.pdf

Version: 2024-02-01

49 papers

3,563 citations

331642 21 h-index 39 g-index

49 all docs 49 docs citations

49 times ranked 3630 citing authors

#	Article	IF	CITATIONS
1	Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Medicine, 2007, 13, 688-694.	30.7	1,847
2	Protection against ischemic brain injury by protein therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 17107-17112.	7.1	199
3	Mechanisms of Secondary Brain Damage in Global and Focal Ischemia: A Speculative Synthesis. Journal of Neurotrauma, 1995, 12, 943-956.	3.4	197
4	Delayed Treatment with \hat{l}_{\pm} -Phenyl-N-tert-butyl Nitrone (PBN) Attenuates Secondary Mitochondrial Dysfunction after Transient Focal Cerebral Ischemia in the Rat. Neurobiology of Disease, 1996, 3, 149-157.	4.4	127
5	Acidosis Induced by Hypercapnia Exaggerates Ischemic Brain Damage. Journal of Cerebral Blood Flow and Metabolism, 1994, 14, 243-250.	4.3	124
6	Coupling Among Energy Failure, Loss of Ion Homeostasis, and Phospholipase A2and C Activation During Ischemia. Journal of Neurochemistry, 1993, 61, 1677-1684.	3.9	115
7	Energy metabolism, ion homeostasis, and cell damage in the brain. Biochemical Society Transactions, 1994, 22, 991-996.	3.4	100
8	The influence of pH on cellular calcium influx during ischemia. Brain Research, 1994, 641, 295-302.	2.2	83
9	Critical values for plasma glucose in aggravating ischaemic brain damage: correlation to extracellular pH. Neurobiology of Disease, 1995, 2, 97-108.	4.4	73
10	The influence of plasma glucose concentrations on ischemic brain damage is a threshold function. Neuroscience Letters, 1994, 177, 63-65.	2.1	67
11	Neuroprotective effect of immunosuppressant FK506 in transient focal ischemia in rats: Therapeutic time window for FK506 in transient focal ischemia. Neurological Research, 2001, 23, 755-760.	1.3	59
12	Oxidative stress accelerates amyloid deposition and memory impairment in a double-transgenic mouse model of Alzheimer's disease. Neuroscience Letters, 2015, 587, 126-131.	2.1	48
13	Adenosine receptor antagonists cancelled the ischemic tolerance phenomenon in gerbil. Brain Research, 2001, 910, 94-98.	2.2	45
14	Effect of ischemic preconditioning on cerebral blood flow after subsequent lethal ischemia in gerbils. Life Sciences, 2006, 78, 1713-1719.	4.3	45
15	Coupling of cellular energy state and ion homeostasis during recovery following brain ischemia. Brain Research, 1993, 604, 185-191.	2.2	44
16	Involvement of mitoKATP channel in protective mechanisms of cerebral ischemic tolerance. Brain Research, 2008, 1238, 199-207.	2.2	37
17	Low Serum n-3 Polyunsaturated Fatty Acid/n-6 Polyunsaturated Fatty Acid Ratio Predicts Neurological Deterioration in Japanese Patients with Acute Ischemic Stroke. Cerebrovascular Diseases, 2013, 36, 388-393.	1.7	33
18	FK506 ameliorates oxidative damage and protects rat brain following transient focal cerebral ischemia. Neurological Research, 2011, 33, 881-889.	1.3	31

#	Article	IF	CITATIONS
19	Ischemic pre-conditioning affects the subcellular distribution of protein kinase C and calcium/calmodulin-dependent protein kinase II in the gerbil hippocampal CA1 neurons. Neurological Research, 2001, 23, 751-754.	1.3	24
20	Continuous oral administration of atorvastatin ameliorates brain damage after transient focal ischemia in rats. Life Sciences, 2014, 94, 106-114.	4.3	24
21	Combination therapy with transductive anti-death FNK protein and FK506 ameliorates brain damage with focal transient ischemia in rat. Journal of Neurochemistry, 2008, 106, 258-270.	3.9	22
22	Intravenous transplantation of bone marrow-derived mononuclear cells prevents memory impairment in transgenic mouse models of Alzheimer's disease. Brain Research, 2015, 1605, 49-58.	2.2	22
23	Acidosis enhances translocation of protein kinase C but not Ca2+/calmodulin-dependent protein kinase II to cell membranes during complete cerebral ischemia. Brain Research, 1999, 849, 119-127.	2.2	21
24	Functional, Metabolic, and Circulatory Changes Associated with Seizure Activity in the Postischemic Brain. Journal of Neurochemistry, 1994, 62, 1511-1515.	3.9	21
25	Regulation of intra- and extracellular pH in the rat brain in acute hypercapnia: a re-appraisal. Brain Research, 1994, 651, 47-56.	2.2	18
26	Combination therapy with bone marrow stromal cells and FK506 enhanced amelioration of ischemic brain damage in rats. Life Sciences, 2011, 89, 50-56.	4.3	18
27	Hyperglycemia and hypercapnia differently affect post-ischemic changes in protein kinases and protein phosphorylation in the rat cingulate cortex. Brain Research, 2004, 995, 218-225.	2.2	15
28	Combination therapy with transductive anti-death FNK protein and FK506 ameliorates brain damage with focal transient ischemia in rat. Journal of Neurochemistry, 2008, 106, 258-70.	3.9	14
29	Mild hypothermia enhanced the protective effect of protein therapy with transductive anti-death FNK protein using a rat focal transient cerebral ischemia model. Brain Research, 2012, 1430, 86-92.	2.2	14
30	Changes in labile energy metabolites, redox state and intracellular pH in postischemic brain of normoand hyperglycemic rats. Brain Research, 1996, 726, 57-63.	2.2	12
31	Brain Protection Therapy in Acute Cerebral Infarction. Journal of Nippon Medical School, 2012, 79, 104-110.	0.9	11
32	Effects of FK506 on the translocation of protein kinase C and CaM kinase II in the gerbil hippocampal CA1 neurons. Neurological Research, 2003, 25, 522-527.	1.3	9
33	Alterations in Lipid and Calcium Metabolism Associated with Seizure Activity in the Postischemic Brain. Journal of Neurochemistry, 2000, 75, 2521-2527.	3.9	8
34	Effects of hyperglycemia and hypercapnia on lipid metabolism during complete brain ischemia. Brain Research, 2004, 1030, 133-140.	2.2	8
35	Aortic Arch Atherosclerosis in Ischaemic Stroke of Unknown Origin Affects Prognosis. Cerebrovascular Diseases Extra, 2014, 4, 92-101.	1.5	7
36	Acute Vertebral Artery Origin Occlusion Leading to Basilar Artery Thrombosis Successfully Treated by Angioplasty with Stenting and Thrombectomy. Interventional Neuroradiology, 2014, 20, 325-328.	1.1	6

3

#	Article	IF	CITATIONS
37	The influence of insulin-induced hypoglycemia on the calcium transients accompanying reversible forebrain ischemia in the rat. Experimental Brain Research, 1990, 105, 363-9.	1.5	5
38	Multiple Vascular Accidents Including Rupture of a Sinus of Valsalva Aneurysm, a Minor Ischemic Stroke and Intracranial Arterial Anomaly in a Patient with Systemic Congenital Abnormalities: A Case Report. Case Reports in Neurology, 2013, 5, 195-200.	0.7	3
39	Acidosis as a Complicating Factor in Cerebral Ischemia. , 1997, , 159-162.		3
40	FK506 attenuates the post-ischemic perturbation of protein kinases and tyrosine phosphorylation in the gerbil hippocampal CA1 sectors. , 2003, 86, 113-116.		2
41	Churg-Strauss Syndrom: Necessity Points in the Diagnosis and Treatment. Nihon Ika Daigaku Igakkai Zasshi, 2005, 1, 21-25.	0.0	2
42	FK506 facilitates the normalization of post-ischemic perturbation of protein kinases and tyrosine phosphorylation in the gerbil hippocampal CA1 sectors. International Congress Series, 2003, 1252, 135-140.	0.2	0
43	A Case of Wallenberg Syndrome due to Vertebral Artery Dissection. Nihon Ika Daigaku Igakkai Zasshi, 2011, 7, 175-178.	0.0	0
44	Biochemical markers of acute ischemic stroke patients. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S132-S132.	4.3	0
45	Time-lag combination therapy for cerebral ischemia using the FNK protein transduction technology and an immunosuppressant, II: In vitro study. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S58-S58.	4.3	0
46	Neuroprotecting Mechanisms of Ischemic Preconditioning. Nihon Ika Daigaku Igakkai Zasshi, 2006, 2, 178-179.	0.0	0
47	Outcome of Patients with Acute Ischemic Stroke in the First Year after the Establishment of a Stroke Care Unit. Nihon Ika Daigaku Igakkai Zasshi, 2008, 4, 96-105.	0.0	0
48	Brain protection therapy on cerebral infarction. Nosotchu, 2014, 36, 147-149.	0.1	0
49	Ionic Metabolism in Cerebral Ischemia. Medical Science Symposia Series, 1995, , 199-208.	0.0	0