Bernd Wunder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10982719/publications.pdf

Version: 2024-02-01

65 2,532 25 49
papers citations h-index g-index

66 66 2014
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Antigorite: High-pressure stability in the system MgOî—¸SiO2î—¸H2O (MSH). Lithos, 1997, 41, 213-227.	1.4	239
2	Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contributions To Mineralogy and Petrology, 2006, 151, 112-120.	3.1	191
3	Boron-isotope fractionation between tourmaline and fluid: an experimental re-investigation. Contributions To Mineralogy and Petrology, 2008, 156, 259-267.	3.1	173
4	Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: An experimental study. Chemical Geology, 2007, 238, 277-290.	3.3	156
5	Behavior of fluid-mobile elements in serpentines from abyssal to subduction environments: Examples from Cuba and Dominican Republic. Chemical Geology, 2012, 312-313, 93-117.	3.3	94
6	Antigorite: Pressure and temperature dependence of polysomatism and water content. European Journal of Mineralogy, 2001, 13, 485-495.	1.3	90
7	Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high P and T. Geochimica Et Cosmochimica Acta, 2013, 101, 285-301.	3.9	87
8	High-pressure ammonium-bearing silicates: Implications for nitrogen and hydrogen storage in the Earth's mantle. American Mineralogist, 2009, 94, 283-292.	1.9	85
9	Ammonium-bearing clinopyroxene: A potential nitrogen reservoir in the Earth's mantle. Chemical Geology, 2010, 270, 240-248.	3.3	84
10	Equilibrium experiments in the system MgO-SiO 2 -H 2 O (MSH): stability fields of clinohumite-OH [Mg 9 Si 4 O 16 (OH) 2], chondrodite-OH [Mg 5 Si 2 O 8 (OH) 2] and phase A (Mg 7 Si 2 O 8 (OH) 6). Contributions To Mineralogy and Petrology, 1998 , 132 , 111 - 120 .	3.1	79
11	Preserved near ultrahigh-pressure melt from continental crust subducted to mantle depths. Geology, 2015, 43, 447-450.	4.4	73
12	Very little water is necessary to make a dry solid silicate system wet. Geology, 2013, 41, 247-250.	4.4	68
13	Experimental boron isotope fractionation between tourmaline and fluid: confirmation from in situ analyses by secondary ion mass spectrometry and from Rayleigh fractionation modelling. Contributions To Mineralogy and Petrology, 2009, 158, 675-681.	3.1	65
14	Trace element partitioning between orthopyroxene and anhydrous silicate melt on the lherzolite solidus from 1.1 to 3.2ÂGPa and 1,230 to 1,535°C in the model system Na2O–CaO–MgO–Al2O3–SiO2. Contributions To Mineralogy and Petrology, 2009, 157, 473-490.	3.1	62
15	Island-arc basalt alkali ratios: Constraints from phengite-fluid partitioning experiments. Geology, 2000, 28, 583.	4.4	59
16	Li-isotope fractionation between silicates and fluids: Pressure dependence and influence of the bonding environment. European Journal of Mineralogy, 2011, 23, 333-342.	1.3	59
17	Lithium speciation in aqueous fluids at high P and T studied by ab initio molecular dynamics and consequences for Li-isotope fractionation between minerals and fluids. Geochimica Et Cosmochimica Acta, 2009, 73, 5428-5434.	3.9	53
18	Kumdykolite, kokchetavite, and cristobalite crystallized in nanogranites from felsic granulites, Orlica-Snieznik Dome (Bohemian Massif): not evidence for ultrahigh-pressure conditions. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	45

#	Article	IF	CITATIONS
19	Carbonatitic and granitic melts produced under conditions of primary immiscibility during anatexis in the lower crust. Earth and Planetary Science Letters, 2016, 454, 121-131.	4.4	43
20	The effect of chrysotile nanotubes on the serpentine-fluid Li-isotopic fractionation. Contributions To Mineralogy and Petrology, 2010, 159, 781-790.	3.1	41
21	Synthesis, properties and stability of Al3Si2O7(OH)3 (phase Pi), a hydrous high - pressure phase in the system Al2O3 - SiO2 - H2O (ASH). European Journal of Mineralogy, 1993, 5, 637-650.	1.3	39
22	High-pressure synthesis and properties of OH-rich topaz. European Journal of Mineralogy, 1999, 11, 803-814.	1.3	38
23	An experimental study on K and Na incorporation in dravitic tourmaline and insight into the origin of diamondiferous tourmaline from the Kokchetav Massif, Kazakhstan. Contributions To Mineralogy and Petrology, 2015, 169, 1.	3.1	34
24	Temperature distribution in piston-cylinder assemblies: Numerical simulations and laboratory experiments. European Journal of Mineralogy, 2004, 16, 7-14.	1.3	33
25	K–Rb–Cs partitioning between phlogopite and fluid: experiments and consequences for the LILE signatures of island arc basalts. Lithos, 2001, 59, 69-90.	1.4	30
26	Heat capacity of wadeite-type K 2 Si 4 O 9 and the pressure-induced stable decomposition of K-feldspar. Contributions To Mineralogy and Petrology, 1998, 131, 210-218.	3.1	27
27	Special Collection: Advances in Ultrahigh-Pressure Metamorphism: Tetrahedral boron in natural and synthetic HP/UHP tourmaline: Evidence from Raman spectroscopy, EMPA, and single-crystal XRD. American Mineralogist, 2016, 101, 93-104.	1.9	27
28	Interlayer vacancy characterization of synthetic phlogopitic micas by IR spectroscopy. European Journal of Mineralogy, 2002, 14, 1129-1138.	1.3	25
29	Synthesis of K-dominant tourmaline. American Mineralogist, 2014, 99, 539-542.	1.9	24
30	Orthopyroxene rim growth between olivine and quartz at low temperatures (750–950°C) and low water concentration. Mineralogy and Petrology, 2009, 97, 223-232.	1.1	22
31	LREE-redistribution among fluorapatite, monazite, and allanite at high pressures and temperatures. American Mineralogist, 2012, 97, 1881-1890.	1.9	22
32	Boron Isotope Fractionation Among Vapor–Liquids–Solids–Melts: Experiments and Atomistic Modeling. Advances in Isotope Geochemistry, 2018, , 33-69.	1.4	22
33	P–T–X controls on Ca and Na distribution between Mg–Al tourmaline and fluid. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	21
34	Experimental evidence on phlogopitic mantle metasomatism induced by phengite dehydration. European Journal of Mineralogy, 2003, 15, 641-647.	1.3	20
35	Synthetic and natural ammonium-bearing tourmaline. American Mineralogist, 2015, 100, 250-256.	1.9	20
36	Partial melting of ultramafic granulites from Dronning Maud Land, Antarctica: Constraints from melt inclusions and thermodynamic modeling. American Mineralogist, 2018, 103, 610-622.	1.9	20

3

#	Article	IF	CITATIONS
37	The 3.65 A phase, MgSi(OH)6: Structural insights from DFT-calculations and T-dependent IR spectroscopy. American Mineralogist, 2012, 97, 1043-1048.	1.9	19
38	Ab-initio synthesis and TEM confirmation of antigorite in the system MgO-SiO ₂ H ₂ O. American Mineralogist, 1997, 82, 760-764.	1.9	17
39	Equation of state and elasticity of the 3.65 \tilde{A} phase: Implications for the X-discontinuity. American Mineralogist, 2015, 100, 2199-2208.	1.9	17
40	The 3.65 A phase in the system MgO-SiO2-H2O: Synthesis, composition, and structure. American Mineralogist, 2011, 96, 1207-1214.	1.9	16
41	A single-crystal X-ray diffraction study of the 3.65ÂÃphase MgSi(OH)6, a high-pressure hydroxide perovskite. Physics and Chemistry of Minerals, 2012, 39, 693-697.	0.8	16
42	A treasure chest full of nanogranitoids: an archive to investigate crustal melting in the Bohemian Massif. Geological Society Special Publication, 2019, 478, 13-38.	1.3	16
43	High-pressure, halogen-bearing melt preserved in ultrahigh-temperature felsic granulites of the Central Maine Terrane, Connecticut (U.S.A.). American Mineralogist, 2021, 106, 1225-1236.	1.9	15
44	Pressure-induced hydrogen bond symmetrisation in guyanaite, \hat{l}^2 -CrOOH: evidence from spectroscopy and ab initio simulations. European Journal of Mineralogy, 2012, 24, 839-850.	1.3	14
45	First high-pressure synthesis of rossmanitic tourmaline and evidence for the incorporation of Li at the X site. Physics and Chemistry of Minerals, 2017, 44, 353-363.	0.8	12
46	Component mobility at $900 \hat{A}^{\circ} \text{C}$ and 18kbar from experimentally grown coronas in a natural gabbro. Geochimica Et Cosmochimica Acta, 2008, 72, 4307-4322.	3.9	11
47	Compressibility of synthetic Mg-Al tourmalines to 60 GPa. American Mineralogist, 2019, 104, 1005-1015.	1.9	11
48	Temperature dependence of the OH-stretching frequencies in topaz-OH. Physics and Chemistry of Minerals, 2010, 37, 65-72.	0.8	10
49	An experimental approach to quantify the effect of tetrahedral boron in tourmaline on the boron isotope fractionation between tourmaline and fluid. American Mineralogist, 2017, 102, 2505-2511.	1.9	10
50	Experimental reactions between olivine and orthopyroxene with phonolite melt: implications for the origins of hydrous amphiboleÂ+ÂphlogopiteÂ+Âdiopside bearing metasomatic veins. Contributions To Mineralogy and Petrology, 2014, 168, 1.	3.1	9
51	Elasticity of phase-Pi (Al3Si2O7(OH)3) $\hat{a}\in$ A hydrous aluminosilicate phase. Physics of the Earth and Planetary Interiors, 2017, 269, 91-97.	1.9	8
52	Experimental study of phlogopite reaction rim formation on olivine in phonolite melts: Kinetics, reaction rates, and residence times. American Mineralogist, 2014, 99, 2211-2226.	1.9	7
53	Creating Reactivity with Unstable Endmembers using Pressure and Temperature: Synthesis of Bulk Cubic Mg _{0.4} Fe _{0.6} N. Angewandte Chemie - International Edition, 2015, 54, 15109-15112.	13.8	7
54	Anomalous elastic behavior of phase egg, AlSiO3(OH), at high pressures. American Mineralogist, 2019, 104, 130-139.	1.9	7

#	Article	IF	CITATIONS
55	Jeremejevite as a precursor for olenitic tourmaline: consequences of non-classical crystallization pathways for composition, textures and B isotope patterns of tourmaline. European Journal of Mineralogy, 2017, 29, 239-255.	1.3	6
56	The OH site in topaz: an IR spectroscopic investigation. Physics and Chemistry of Minerals, 2010, 37, 653-664.	0.8	5
57	Al3Si2O7(OH)3, phase Pi (formerly piezotite): Crystal structure of a synthetic high-pressure silicate rediscovered. European Journal of Mineralogy, 1997, 8, 1283-1292.	1.3	5
58	Synthetic [4]B-bearing dumortierite and natural [4]B-free magnesiodumortierite from the Dora-Maira Massif: differences in boron coordination in response to ultrahigh pressure. European Journal of Mineralogy, 2018, 30, 471-483.	1.3	4
59	Synthesis and crystal structure of Pb-dominant tourmaline. American Mineralogist, 2020, , .	1.9	4
60	New insights in the mechanisms of the reaction 3.65 ÃÂphase  =  clinoenstatite + water down to nanoscales. European Journal of Mineralogy, 2021, 33, 675-686.	1.3	4
61	Corundum-quartz metastability: the influence of a nanometer-sized phase on mineral equilibria in the system Al2O3–SiO2–H2O. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	3
62	Raman spectroscopic quantification of tetrahedral boron in synthetic aluminum-rich tourmaline. American Mineralogist, 2021, 106, 872-882.	1.9	2
63	In situ micro-FTIR spectroscopic investigations of synthetic ammonium phengite under pressure and temperature. European Journal of Mineralogy, 2020, 32, 469-482.	1.3	2
64	Orthopyroxene rim growth during reaction of (Co, Ni, Mn, Zn)-doped forsterite and quartz: Experimental constraints on element distribution and grain boundary diffusion. Mineralogy and Petrology, 2022, 116, 137-149.	1.1	1
65	In situ reinvestigation of reaction phase A plus high-pressure clinoenstatite to forsterite plus water in the system MgO-SiO ₂ H ₂ O (MSH). European Journal of Mineralogy, 2022, 34, 201-213.	1.3	1