
Alper Akkaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10982378/publications.pdf Version: 2024-02-01

Διάερ Δκκλγλ

#	Article	IF	CITATION
1	Modification of polyacrylonitrile fabric for antibacterial application by tetracycline immobilization. Polymer Testing, 2019, 78, 105959.	4.8	8
2	Developing an antibacterial biomaterial. European Polymer Journal, 2016, 84, 326-337.	5.4	12
3	Development of a new antibacterial biomaterial by tetracycline immobilization on calcium-alginate beads. Carbohydrate Polymers, 2016, 151, 441-451.	10.2	34
4	Degradation of Dyes by Laccase. Analytical Letters, 2016, 49, 790-798.	1.8	15
5	Thrombin immobilization to Poly(Methacrylicacid) graft polymerized PET and PAN fabrics. Fibers and Polymers, 2013, 14, 358-364.	2.1	4
6	Covalent immobilization of urease to modified ethyl cellulose. Fibers and Polymers, 2013, 14, 22-27.	2.1	9
7	THROMBIN IMMOBILIZATION TO METHACRYLIC ACID GRAFTED POLY(3-HYDROXYBUTYRATE) AND ITS <i>IN VITRO</i> APPLICATION. Preparative Biochemistry and Biotechnology, 2013, 43, 48-59.	1.9	3
8	Thrombin immobilization to enzymatic modified PET and PAN fabrics and their applications. Fibers and Polymers, 2012, 13, 985-993.	2.1	2
9	Batch production of Pyranose 2-oxidase from Trametes versicolor (ATCC 11235) in medium with a lignocellulosic substrate and enzymatic bleaching of cotton fabrics. World Journal of Microbiology and Biotechnology, 2012, 28, 1523-1531.	3.6	2
10	Microbial modification of polyethylene terephthalate fabric. Journal of Applied Polymer Science, 2011, 121, 690-695.	2.6	6
11	Sequential immobilization of urease to glycidyl methacrylate grafted sodium alginate. Journal of Molecular Catalysis B: Enzymatic, 2010, 67, 195-201.	1.8	17
12	Determination of 5â€Aminosalicylic Acid by Catalaseâ€Peroxidase Based Biosensor. Electroanalysis, 2009, 21, 1805-1810.	2.9	18
13	Pyranose 2-oxidase (P2O): Production fromTrametes versicolorin Stirred Tank Reactor andits Partial Characterization. Preparative Biochemistry and Biotechnology, 2008, 39, 32-45.	1.9	2