
Godfried Augenbroe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10980709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable building retrofit model for high-rise, high-density city: a case in Hong Kong. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2021, 174, 69-82.	0.7	2
2	Occupancy data at different spatial resolutions: Building energy performance and model calibration. Applied Energy, 2021, 286, 116492.	10.1	43
3	Compound Climate and Infrastructure Events: How Electrical Grid Failure Alters Heat Wave Risk. Environmental Science & Technology, 2021, 55, 6957-6964.	10.0	66
4	A statistical model of the spatial variability of weather for use in building simulation practice. Building and Environment, 2021, 206, 108331.	6.9	8
5	Quantification methods of natural ventilated building performance in preliminary design. Building Research and Information, 2020, 48, 401-414.	3.9	2
6	Effective and scalable modelling of existing non-domestic buildings with radiator system under uncertainty. Journal of Building Performance Simulation, 2020, 13, 740-759.	2.0	4
7	A new approach to performance-based building design exploration using linear inverse modeling. Journal of Building Performance Simulation, 2019, 12, 246-271.	2.0	11
8	A novel inverse data driven modelling approach to performance-based building design during early stages. Advanced Engineering Informatics, 2019, 41, 100925.	8.0	4
9	Investigation of maximum cooling loss in a piping network using Bayesian Markov Chain Monte Carlo method. Journal of Building Performance Simulation, 2019, 12, 117-132.	2.0	5
10	Optimal demand charge reduction for commercial buildings through a combination of efficiency and flexibility measures. Applied Energy, 2018, 221, 180-194.	10.1	19
11	Lighted-weighted model predictive control for hybrid ventilation operation based on clusters of neural network models. Automation in Construction, 2018, 89, 250-265.	9.8	24
12	Optimal configuration of multiple-chiller plants under cooling load uncertainty for different climate effects and building types. Energy and Buildings, 2018, 158, 684-697.	6.7	38
13	Evaluating the potential of hybrid ventilation for small to medium sized office buildings with different intelligent controls and uncertainties in US climates. Energy and Buildings, 2018, 158, 1648-1661.	6.7	29
14	Model Predictive Control Strategy for Hybrid Ventilation Building Operation. , 2018, , .		2
15	A review of uncertainty analysis in building energy assessment. Renewable and Sustainable Energy Reviews, 2018, 93, 285-301.	16.4	265
16	Uncertainty analysis of thermal comfort in a prototypical naturally ventilated office building and its implications compared to deterministic simulation. Energy and Buildings, 2017, 146, 283-294.	6.7	30
17	Effects of scenario uncertainty on chiller sizing method. Applied Thermal Engineering, 2017, 123, 187-195.	6.0	17
18	Sizing heating, ventilating, and air-conditioning systems under uncertainty in both load-demand and capacity-supply side from a life-cycle aspect. Science and Technology for the Built Environment, 2017, 23, 367-381.	1.7	16

GODFRIED AUGENBROE

#	Article	IF	CITATIONS
19	Uncertainty Analysis for Thermal Comfort Evaluation in Naturally Ventilated Buildings. , 2017, , .		1
20	Quantifying uncertainty in outdoor air flow control and its impacts on building performance simulation and fault detection. Energy and Buildings, 2017, 134, 115-128.	6.7	26
21	An application of normative decision theory to the valuation of energy efficiency investments under uncertainty. Automation in Construction, 2017, 73, 78-87.	9.8	9
22	Meta-modeling of occupancy variables and analysis of their impact on energy outcomes of office buildings. Applied Energy, 2016, 174, 166-180.	10.1	31
23	Robust optimal design of district cooling systems and the impacts of uncertainty and reliability. Energy and Buildings, 2016, 122, 11-22.	6.7	39
24	Assessment of linear emulators in lightweight Bayesian calibration of dynamic building energy models for parameter estimation and performance prediction. Energy and Buildings, 2016, 124, 194-202.	6.7	70
25	Reconstructing building stock to replicate energy consumption data. Energy and Buildings, 2016, 117, 301-312.	6.7	39
26	An uncertainty-based design optimization method for district cooling systems. Energy, 2016, 102, 516-527.	8.8	53
27	Investigation of the ageing effect on chiller plant maximum cooling capacity using Bayesian Markov Chain Monte Carlo method. Journal of Building Performance Simulation, 2016, 9, 529-541.	2.0	14
28	Timing residential photovoltaic investments in the presence of demand uncertainties. Sustainable Cities and Society, 2016, 20, 109-123.	10.4	22
29	Determining the cost optimum among a discrete set of building technologies to satisfy stringent energy targets. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2015, 29, 417-427.	1.1	2
30	Assessment of uncertainty and confidence in building design exploration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2015, 29, 429-441.	1.1	24
31	Calibration of Dynamic Building Energy Models with Multiple Responses Using Bayesian Inference and Linear Regression Models. Energy Procedia, 2015, 78, 979-984.	1.8	12
32	Quantification of model form uncertainty in the calculation of solar diffuse irradiation on inclined surfaces for building energy simulation. Journal of Building Performance Simulation, 2015, 8, 253-265.	2.0	9
33	Importance analysis and meta-model construction with correlated variables in evaluation of thermal performance of campus buildings. Building and Environment, 2015, 92, 61-74.	6.9	47
34	A GIS-based Energy Balance Modeling System for Urban Solar Buildings. Energy Procedia, 2015, 75, 2946-2952.	1.8	39
35	Scalable methodology for large scale building energy improvement: Relevance of calibration in model-based retrofit analysis. Building and Environment, 2015, 87, 342-350.	6.9	68
36	Urban heat island effect on energy application studies of office buildings. Energy and Buildings, 2014, 77, 171-179.	6.7	76

GODFRIED AUGENBROE

#	Article	IF	CITATIONS
37	Uncertainty quantification of microclimate variables in building energy models. Journal of Building Performance Simulation, 2014, 7, 17-32.	2.0	58
38	Exploring HVAC system sizing under uncertainty. Energy and Buildings, 2014, 81, 243-252.	6.7	112
39	The Role of Construction Detailing and Workmanship in Achieving Energy-efficient Buildings. , 2014, , .		5
40	Uncertainty in developing supervisory demand-side controls in buildings: A framework and guidance. Automation in Construction, 2013, 35, 28-43.	9.8	21
41	Quantitative risk management for energy retrofit projects. Journal of Building Performance Simulation, 2013, 6, 257-268.	2.0	36
42	Local vs. integrated control strategies for double-skin systems. Automation in Construction, 2013, 30, 50-56.	9.8	14
43	The use of normative energy calculation beyond building performance rating. Journal of Building Performance Simulation, 2013, 6, 282-292.	2.0	31
44	A Design Methodology for Energy Infrastructures at the Campus Scale. Computer-Aided Civil and Infrastructure Engineering, 2013, 28, 753-768.	9.8	13
45	A stochastic model based energy management system for off-grid solar houses. Building and Environment, 2012, 50, 90-103.	6.9	28
46	On-line parameter estimation and optimal control strategy of a double-skin system. Building and Environment, 2011, 46, 1141-1150.	6.9	27
47	Longitudinal prediction of the operational energy use of buildings. Building and Environment, 2011, 46, 1670-1680.	6.9	55
48	Facility Maintenance Performance Perspective to Target Strategic Organizational Objectives. Journal of Performance of Constructed Facilities, 2010, 24, 180-187.	2.0	29
49	Decision model for energy performance improvements in existing buildings. Journal of Engineering, Design and Technology, 2009, 7, 21-36.	1.7	15
50	Simulation-enhanced prototyping of an experimental solar house. Building Simulation, 2008, 1, 336-355.	5.6	7
51	Empowerment of decision-makers in mould remediation. Building Research and Information, 2008, 36, 486-498.	3.9	7
52	Integrating Formalized User Experience within Building Design Models. Computer-Aided Civil and Infrastructure Engineering, 2007, 22, 117-132.	9.8	6
53	Quantification methods of technical building performance. Building Research and Information, 2005, 33, 159-172.	3.9	76
54	Real-time optimization of a double-skin façade based on lumped modeling and occupant preference. Building and Environment, 2004, 39, 939-948.	6.9	50

#	Article	IF	CITATIONS
55	Calibration of a lumped simulation model for double-skin façade systems. Energy and Buildings, 2004, 36, 1117-1130.	6.7	56
56	Analysis of uncertainty in building design evaluations and its implications. Energy and Buildings, 2002, 34, 951-958.	6.7	238