Wei Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10979389/publications.pdf

Version: 2024-02-01

361413 642732 3,032 26 20 23 citations h-index g-index papers 26 26 26 3460 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation. Nature Nanotechnology, 2021, 16, 214-223.	31.5	60
2	T cell circuits that sense antigen density with an ultrasensitive threshold. Science, 2021, 371, 1166-1171.	12.6	99
3	SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Science Translational Medicine, 2021, 13, .	12.4	215
4	Precise T cell recognition programs designed by transcriptionally linking multiple receptors. Science, 2020, 370, 1099-1104.	12.6	85
5	Simple Rules Determine Distinct Patterns of Branching Morphogenesis. Cell Systems, 2019, 9, 221-227.	6.2	9
6	A Molecular Switch for the Orientation of Epithelial Cell Polarization. Developmental Cell, 2014, 31, 171-187.	7.0	175
7	Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures. Journal of Cell Biology, 2013, 203, 359-372.	5.2	45
8	Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures. Journal of General Physiology, 2013, 142, 1425OIA43.	1.9	0
9	A Computational Approach to Understand In Vitro Alveolar Morphogenesis. PLoS ONE, 2009, 4, e4819.	2.5	15
10	Involvement of RhoA, ROCK I and myosin II in inverted orientation of epithelial polarity. EMBO Reports, 2008, 9, 923-929.	4.5	106
11	Cell-Polarity Dynamics Controls the Mechanism of Lumen Formation in Epithelial Morphogenesis. Current Biology, 2008, 18, 507-513.	3.9	190
12	Formation of Multicellular Epithelial Structures. Novartis Foundation Symposium, 2008, , 193-205.	1.1	8
13	Rac1 is required for reorientation of polarity and lumen formation through a PI 3-kinase-dependent pathway. American Journal of Physiology - Renal Physiology, 2007, 293, F1633-F1640.	2.7	37
14	Nudel Modulates Kinetochore Association and Function of Cytoplasmic Dynein in M Phase. Molecular Biology of the Cell, 2007, 18, 2656-2666.	2.1	80
15	Formation of Cysts by Alveolar Type II Cells in Three-dimensional Culture Reveals a Novel Mechanism for Epithelial Morphogenesis. Molecular Biology of the Cell, 2007, 18, 1693-1700.	2.1	91
16	PTEN-Mediated Apical Segregation of Phosphoinositides Controls Epithelial Morphogenesis through Cdc42. Cell, 2007, 128, 383-397.	28.9	653
17	Kinetochore dynein generates a poleward pulling force to facilitate congression and full chromosome alignment. Cell Research, 2007, 17, 701-712.	12.0	65
18	Morphological and Biochemical Analysis of Rac1 in Threeâ€Dimensional Epithelial Cell Cultures. Methods in Enzymology, 2006, 406, 676-691.	1.0	49

#	Article	IF	CITATION
19	Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nature Cell Biology, 2006, 8, 963-970.	10.3	267
20	\hat{l}^21 -Integrin Orients Epithelial Polarity via Rac1 and Laminin. Molecular Biology of the Cell, 2005, 16, 433-445.	2.1	317
21	Nudel functions in membrane traffic mainly through association with Lis1 and cytoplasmic dynein. Journal of Cell Biology, 2004, 164, 557-566.	5.2	115
22	Epithelial polarity and tubulogenesis in vitro. Trends in Cell Biology, 2003, 13, 169-176.	7.9	230
23	Hepatocyte Growth Factor Switches Orientation of Polarity and Mode of Movement during Morphogenesis of Multicellular Epithelial Structures. Molecular Biology of the Cell, 2003, 14, 748-763.	2.1	93
24	Cholesterol-dependent modulation of dendrite outgrowth and microtubule stability in cultured neurons. Journal of Neurochemistry, 2002, 80, 940-940.	3.9	0
25	Calmodulin Overexpression Causes Ca2+-Dependent Apoptosis of Pancreatic \hat{l}^2 Cells, Which Can Be Prevented by Inhibition of Nitric Oxide Synthase. Laboratory Investigation, 2002, 82, 1229-1239.	3.7	28
26	Classification of the frog lingual gland cells and their exocytotic features. Journal of Electron Microscopy, 1998, 47, 73-80.	0.9	0