Antonio Alcina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1097918/publications.pdf

Version: 2024-02-01

80 papers 2,397 citations

30 h-index 233125 45 g-index

81 all docs

81 docs citations

81 times ranked 4212 citing authors

#	Article	IF	CITATIONS
1	Interferon regulatory factor 5 (IRF5) gene variants are associated with multiple sclerosis in three distinct populations. Journal of Medical Genetics, 2008, 45, 362-369.	1.5	128
2	Multiple Sclerosis Risk Variant HLA-DRB1*1501 Associates with High Expression of DRB1 Gene in Different Human Populations. PLoS ONE, 2012, 7, e29819.	1.1	100
3	Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes. Nature Structural and Molecular Biology, 2011, 18, 708-714.	3.6	95
4	IFNAR1 and IFNAR2 polymorphisms confer susceptibility to multiple sclerosis but not to interferon-beta treatment response. Journal of Neuroimmunology, 2005, 163, 165-171.	1.1	85
5	The autoimmune disease-associated KIF5A, CD226 and SH2B3 gene variants confer susceptibility for multiple sclerosis. Genes and Immunity, 2010, 11, 439-445.	2.2	79
6	Effects of the multiple sclerosis associated â°'330 promoter polymorphism in IL2 allelic expression. Journal of Neuroimmunology, 2004, 148, 212-217.	1.1	76
7	IL2RA/CD25 Gene Polymorphisms: Uneven Association with Multiple Sclerosis (MS) and Type 1 Diabetes (T1D). PLoS ONE, 2009, 4, e4137.	1.1	65
8	MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain, 2013, 136, 1778-1782.	3.7	60
9	Allelic expression and interleukin-2 polymorphisms in multiple sclerosis. Journal of Neuroimmunology, 2001, 119, 101-105.	1.1	59
10	Identification of a functional variant in the <i>KIF5A-CYP27B1-METTL1-FAM119B</i> locus associated with multiple sclerosis. Journal of Medical Genetics, 2013, 50, 25-33.	1.5	59
11	CD40: Novel Association with Crohn's Disease and Replication in Multiple Sclerosis Susceptibility. PLoS ONE, 2010, 5, e11520.	1.1	56
12	A cytokine gene screen uncovers SOCS1 as genetic risk factor for multiple sclerosis. Genes and Immunity, 2012, 13, 21-28.	2.2	56
13	STAT3 locus in inflammatory bowel disease and multiple sclerosis susceptibility. Genes and Immunity, 2010, 11, 264-268.	2.2	54
14	OAS1 gene haplotype confers susceptibility to multiple sclerosis. Tissue Antigens, 2006, 68, 446-449.	1.0	50
15	IL2RA/CD25 polymorphisms contribute to multiple sclerosis susceptibility. Journal of Neurology, 2007, 254, 682-684.	1.8	50
16	Role of the small GTPase Rab27a during Herpes simplex virus infection of oligodendrocytic cells. BMC Microbiology, 2012, 12, 265.	1.3	50
17	Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genetics, 2019, 15, e1008180.	1.5	46
18	Genome-Wide Association Study of Multiple Sclerosis Confirms a Novel Locus at 5p13.1. PLoS ONE, 2012, 7, e36140.	1.1	46

#	Article	IF	CITATIONS
19	ANKRD55 and DHCR7 are novel multiple sclerosis risk loci. Genes and Immunity, 2012, 13, 253-257.	2.2	44
20	High susceptibility of a human oligodendroglial cell line to herpes simplex type 1 infection. Journal of NeuroVirology, 2005, 11, 190-198.	1.0	43
21	Polymorphisms in the IL2, IL2RA and IL2RB genes in multiple sclerosis risk. European Journal of Human Genetics, 2010, 18, 794-799.	1.4	43
22	A functional variant that affects exon-skipping and protein expression of <i>SP140</i> expression of <i>SP140</i> expression of <i>SP140</i> expression of <i>SP140</i> expression of <i <i="" and="" e<="" expression="" of="" protein="" serior="" specific="" td=""><td>1.4</td><td>43</td></i>	1.4	43
23	The cloning and expression of Pfacs1, a Plasmodium falciparum fatty acyl coenzyme A synthetase-1 targeted to the host erythrocyte cytoplasm. Journal of Molecular Biology, 1999, 291, 59-70.	2.0	39
24	Protein tyrosine phosphatase gene (PTPN22) polymorphism in multiple sclerosis. Journal of Neurology, 2005, 252, 994-995.	1.8	38
25	The high producer variant of the Fc-receptor like-3 (FCRL3) gene is involved in protection against multiple sclerosis. Journal of Neuroimmunology, 2008, 195, 146-150.	1.1	37
26	Replication of top markers of a genome-wide association study in multiple sclerosis in Spain. Genes and Immunity, 2011, 12, 110-115.	2.2	36
27	Genome-wide significant association of ANKRD55rs6859219 and multiple sclerosis risk. Journal of Medical Genetics, 2013, 50, 140-143.	1.5	34
28	Genome-wide significant association with seven novel multiple sclerosis risk loci. Journal of Medical Genetics, 2015, 52, 848-855.	1.5	34
29	The 1858T PTPN22 gene variant contributes to a genetic risk of type 1 diabetes in a Ukrainian population. Tissue Antigens, 2006, 67, 430-433.	1.0	32
30	Closing the case of (i>APOE (i>in multiple sclerosis: no association with disease risk in over 29â€000 subjects: Figure 1. Journal of Medical Genetics, 2012, 49, 558-562.	1.5	31
31	The T244I variant of the interleukinâ€7 receptorâ€alpha gene and multiple sclerosis. Tissue Antigens, 2008, 72, 158-161.	1.0	30
32	HERV-W polymorphism in chromosome X is associated with multiple sclerosis risk and with differential expression of MSRV. Retrovirology, 2014, 11, 2.	0.9	30
33	Validation of the CD6 and TNFRSF1A loci as risk factors for multiple sclerosis in Spain. Journal of Neuroimmunology, 2010, 223, 100-103.	1.1	29
34	Human Endogenous Retrovirus HERV-Fc1 Association with Multiple Sclerosis Susceptibility: A Meta-Analysis. PLoS ONE, 2014, 9, e90182.	1.1	29
35	The Plasmodium falciparum fatty acyl-CoA synthetase family (PfACS) and differential stage-specific expression in infected erythrocytes. Molecular and Biochemical Parasitology, 2003, 126, 109-112.	0.5	28
36	Replication study of 10 genes showing evidence for association with multiple sclerosis: validation of TMEM39A, IL12B and CLBL genes. Multiple Sclerosis Journal, 2012, 18, 959-965.	1.4	28

#	Article	IF	Citations
37	Allelic selection of human IL-2 gene. European Journal of Immunology, 2000, 30, 3516-3521.	1.6	27
38	The â^174/â^597 promoter polymorphisms in the interleukin-6 gene are not associated with susceptibility to multiple sclerosis. Journal of the Neurological Sciences, 2001, 190, 69-72.	0.3	26
39	Tag-SNP analysis of the GFI1-EVI5-RPL5-FAM69 risk locus for multiple sclerosis. European Journal of Human Genetics, 2010, 18, 827-831.	1.4	25
40	SP140 regulates the expression of immune-related genes associated with multiple sclerosis and other autoimmune diseases by NF- \hat{l}^9 B inhibition. Human Molecular Genetics, 2018, 27, 4012-4023.	1.4	25
41	The C-terminal domain of the Plasmodium falciparum acyl-CoA synthetases PfACS1 and PfACS3 functions as ligand for ankyrin. Molecular and Biochemical Parasitology, 2003, 129, 191-198.	0.5	23
42	Fine Mapping and Functional Analysis of the Multiple Sclerosis Risk Gene CD6. PLoS ONE, 2013, 8, e62376.	1.1	23
43	The heat-shock response in Trypanosoma cruzi. FEBS Journal, 1988, 172, 121-127.	0.2	22
44	Activation by synergism between endotoxin and lymphokines of the mouse macrophage cell line J774 against infection by Trypanosoma cruzi. Parasite Immunology, 1987, 9, 175-186.	0.7	21
45	A tubulin-related 55 kilodalton surface antigen recognized by different Trypanosoma cruzi stage-specific monoclonal antibodies from infected mice. Molecular and Biochemical Parasitology, 1988, 29, 181-190.	0.5	21
46	Glutamine and tetrapeptide repeat variations affect the biological activity of different mouse interleukin-2 alleles. European Journal of Immunology, 1996, 26, 1675-1682.	1.6	21
47	Antiparasitic Effects of the Intra-Golgi Transport Inhibitor Megalomicin. Antimicrobial Agents and Chemotherapy, 1998, 42, 2668-2673.	1.4	20
48	Multiple sclerosis association study with the <i>TENRâ€IL2â€IL21</i> region in a Spanish population. Tissue Antigens, 2009, 74, 244-247.	1.0	20
49	The multiple sclerosis-associated regulatory variant rs10877013 affects expression of <i>CYP27B1</i> and <i>VDR</i> under inflammatory or vitamin D stimuli. Multiple Sclerosis Journal, 2016, 22, 999-1006.	1.4	19
50	A colorimetric assay based on cell viability for the indirect detection of intracellular replication and killing of Trypanosoma cruzi. Journal of Immunological Methods, 1987, 105, 1-8.	0.6	18
51	A Trypanosoma cruzi membrane protein shares an epitope with a lymphocyte activation antigen and induces crossreactive antibodies Journal of Experimental Medicine, 1992, 175, 1473-1482.	4.2	17
52	High ACSL5 Transcript Levels Associate with Systemic Lupus Erythematosus and Apoptosis in Jurkat T Lymphocytes and Peripheral Blood Cells. PLoS ONE, 2011, 6, e28591.	1.1	16
53	Characterization of the MAL2-positive compartment in oligodendrocytes. Experimental Cell Research, 2009, 315, 3453-3465.	1.2	15
54	Members 6B and 14 of the TNF receptor superfamily in multiple sclerosis predisposition. Genes and Immunity, 2011, 12, 145-148.	2.2	14

#	Article	IF	CITATIONS
55	A Trypanosoma cruzi monoclonal antibody that recognizes a superficial tubulin-like antigen. Biochemical and Biophysical Research Communications, 1986, 139, 1176-1183.	1.0	13
56	Existence of at least five interleukin-2 molecules in different mouse strains. Immunogenetics, 1993, 38, 300-3.	1.2	13
57	Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients. G3: Genes, Genomes, Genetics, 2016, 6, 2073-2079.	0.8	13
58	A splice variant in the ACSL5 gene relates migraine with fatty acid activation in mitochondria. European Journal of Human Genetics, 2016, 24, 1572-1577.	1.4	13
59	A new risk variant for multiple sclerosis at the immunoglobulin heavy chain locus associates with intrathecal IgG, IgM index and oligoclonal bands. Multiple Sclerosis Journal, 2015, 21, 1104-1111.	1.4	12
60	The detection of a spectrin-like protein in with a polyclonal antibody. Cell Biology International Reports, 1988, 12, 979-985.	0.7	11
61	Effect of heterocyclic analogues of triphenylmethane dyes against Trypanosoma cruzi. Annals of Tropical Medicine and Parasitology, 1988, 82, 235-241.	1.6	11
62	Interaction of PLP with GFP-MAL2 in the Human Oligodendroglial Cell Line HOG. PLoS ONE, 2011, 6, e19388.	1.1	10
63	Hexose-6-phosphate dehydrogenase: a new risk gene for multiple sclerosis. European Journal of Human Genetics, 2010, 18, 618-620.	1.4	9
64	Splice-site variant in ACSL5: a marker promoting opposing effect on cell viability and protein expression. European Journal of Human Genetics, 2019, 27, 1836-1844.	1.4	9
65	HIGH EXPRESSION IN BACTERIA AND PURIFICATION OF POLYMORPHIC MOUSE INTERLEUKIN 2 MOLECULES. Cytokine, 1998, 10, 249-253.	1.4	8
66	Early and late heat-induced proteins during Leishmania mexicana transformation. Biochemical and Biophysical Research Communications, 1988, 156, 1360-1367.	1.0	7
67	A new cDNA sequence for the murine interleukin-2 gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1132, 335-336.	2.4	7
68	Analysis of â^'631 and â^'475 interleukin-2 promoter single nucleotide polymorphisms in multiple sclerosis. International Journal of Immunogenetics, 2002, 29, 389-390.	1.2	7
69	Lack of association between -384 and 114 IL-2 gene polymorphisms and rheumatoid arthritis. Journal of Rheumatology, 2003, 30, 435-7.	1.0	6
70	Influence of the LILRA3 Deletion on Multiple Sclerosis Risk: Original Data and Meta-Analysis. PLoS ONE, 2015, 10, e0134414.	1.1	5
71	A New Risk Variant for Multiple Sclerosis at 11q23.3 Locus Is Associated with Expansion of CXCR5+ Circulating Regulatory T Cells. Journal of Clinical Medicine, 2020, 9, 625.	1.0	5
72	Activity of P536, a UDP-glucose analog, against Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy, 1988, 32, 1412-1415.	1.4	4

#	Article	lF	CITATIONS
73	Induction of Autoantibodies to Different Interleukin-2 Allotypes. Journal of Autoimmunity, 1999, 12, 221-227.	3.0	4
74	A comparison of genomic profiles of complex diseases under different models. BMC Medical Genomics, 2015, 9, 3.	0.7	4
75	Identification of the genetic mechanism that associates <i>L3MBTL3</i> to multiple sclerosis. Human Molecular Genetics, 2022, 31, 2155-2163.	1.4	4
76	Genomewide study of multiple sclerosis. New England Journal of Medicine, 2007, 357, 2200; author reply 2200-1.	13.9	3
77	Targeted resequencing reveals rare variants enrichment in multiple sclerosis susceptibility genes. Human Mutation, 2020, 41, 1308-1320.	1.1	1
78	Stimulation of the trypanocidal and endoribonuclease activities by the interferon induced ($2\hat{a} \in \hat{a} \in \hat{a} \in \hat{a} \in \hat{a}$) oligoadenylates. Molecular and Biochemical Parasitology, 1987, 26, 113-119.	0.5	0
79	Genetics of Multiple Sclerosis. Rare Diseases of the Immune System, 2019, , 183-202.	0.1	0
80	IL-2 Biology and Polymorphisms in Multifactorial Conditions. , 2006, , 109-119.		0