Kevin P Furlong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10978314/publications.pdf

Version: 2024-02-01

201385 197535 2,541 67 27 49 citations h-index g-index papers 67 67 67 1979 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mid-Miocene to Present Upper-Plate Deformation of the Southern Cascadia Forearc: Effects of the Superposition of Subduction and Transform Tectonics. Frontiers in Earth Science, 2022, 10, .	0.8	2
2	Triggering an unexpected earthquake in an uncoupled subduction zone. Science Advances, 2021, 7, .	4.7	24
3	Exploiting Thermochronology to Quantify Exhumation Histories and Patterns of Uplift Along the Margins of Tibet. Frontiers in Earth Science, 2021, 9, .	0.8	1
4	Evidence of displacement-driven maturation along the San Cristobal Trough transform plate boundary. Earth and Planetary Science Letters, 2018, 485, 88-98.	1.8	7
5	Initiation of Strikeâ€Slip Faults, Serpentinization, and Methane: The Nootka Fault Zone, the Juan de Fucaâ€Explorer Plate Boundary. Geochemistry, Geophysics, Geosystems, 2018, 19, 4290-4312.	1.0	13
6	The Accumulation of Slip Deficit in Subduction Zones in the Absence of Mechanical Coupling: Implications for the Behavior of Megathrust Earthquakes. Journal of Geophysical Research: Solid Earth, 2018, 123, 8260-8278.	1.4	28
7	Evaluating the state of stress and seismic hazard in Thailand and vicinity through finite element modeling. Journal of Asian Earth Sciences, 2018, 166, 260-269.	1.0	1
8	A Bayesian rupture model of the 2007M 8.1 Solomon Islands earthquake in Southwest Pacific with coral reef displacement measurements. Journal of Asian Earth Sciences, 2017, 138, 92-97.	1.0	2
9	Reconciling the deformational dichotomy of the 2016 <i>M</i> _{<i>w</i>} 7.8 Kaikoura New Zealand earthquake. Geophysical Research Letters, 2017, 44, 6788-6791.	1.5	23
10	Integrated geophysical characteristics of the 2015 Illapel, Chile, earthquake. Journal of Geophysical Research: Solid Earth, 2017, 122, 4691-4711.	1.4	13
11	Evaluating the size and extent of paleolakes in central Tibet during the late Pleistocene. Geophysical Research Letters, 2017, 44, 5476-5485.	1.5	18
12	Rapid and punctuated Late Holocene recession of Siling Co, central Tibet. Quaternary Science Reviews, 2017, 172, 15-31.	1.4	45
13	Foreshock triggering of the 1 April 2014 Mw 8.2 Iquique, Chile, earthquake. Earth and Planetary Science Letters, 2016, 447, 119-129.	1.8	21
14	Reply to Comment on "Crustal strength in central Tibet determined from Holocene shoreline deflection around Siling Coâ€. Earth and Planetary Science Letters, 2016, 433, 396-398.	1.8	1
15	Revisiting the Canterbury earthquake sequence after the 14 February 2016 <i>M_w</i> 5.7 event. Geophysical Research Letters, 2016, 43, 7503-7510.	1.5	2
16	Designing Technology-Enhanced Active Learning Environments for the Undergraduate Geoscience Classroom., 2016,, 31-52.		1
17	Crustal strength in central Tibet determined from Holocene shoreline deflection around Siling Co. Earth and Planetary Science Letters, 2015, 423, 145-154.	1.8	42
18	Triggered aseismic slip adjacent to the 6 February 2013 Mw 8.0 Santa Cruz Islands megathrust earthquake. Earth and Planetary Science Letters, 2014, 388, 265-272.	1.8	24

#	Article	IF	CITATIONS
19	Holocene slip rate along the Gyaring Co Fault, central Tibet. Geophysical Research Letters, 2014, 41, 5829-5837.	1.5	24
20	Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake. Nature, 2014, 512, 295-298.	13.7	158
21	Using regional moment tensors to constrain the kinematics and stress evolution of the 2010–2013 Canterbury earthquake sequence, South Island, New Zealand. Tectonophysics, 2014, 633, 1-15.	0.9	25
22	Effects of Active Learning on Enhancing Student Critical Thinking in an Undergraduate General Science Course. Innovative Higher Education, 2013, 38, 223-235.	1.5	113
23	Changes in plate boundary kinematics: Punctuated or smoothly varying — Evidence from the mid-Cenozoic transition from lithospheric extension to shortening in New Zealand. Tectonophysics, 2013, 608, 1328-1342.	0.9	9
24	Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annual Review of Earth and Planetary Sciences, 2013, 41, 385-410.	4.6	109
25	Relationship between outer forearc subsidence and plate boundary kinematics along the Northeast Japan convergent margin. Geochemistry, Geophysics, Geosystems, 2013, 14, 5227-5243.	1.0	22
26	Quantifying potential tsunami hazard in the Puysegur subduction zone, south of New Zealand. Geophysical Journal International, 2010, 183, 1512-1524.	1.0	18
27	A Great Earthquake Rupture Across a Rapidly Evolving Three-Plate Boundary. Science, 2009, 324, 226-229.	6.0	54
28	Intraplate deformation adjacent to the Macquarie Ridge south of New Zealandâ€"The tectonic evolution of a complex plate boundary. Tectonophysics, 2009, 463, 1-14.	0.9	31
29	The lithospheric geodynamics of plate boundary transpression in New Zealand: Initiating and emplacing subduction along the Hikurangi margin, and the tectonic evolution of the Alpine Fault system. Tectonophysics, 2009, 474, 449-462.	0.9	55
30	Integrated geomorphic and geodynamic modeling of a potential blind thrust in the San Francisco Bay area, California. Tectonophysics, 2009, 471, 319-328.	0.9	4
31	Locating the deep extent of the plate boundary along the Alpine Fault zone, New Zealand: Implications for patterns of exhumation in the Southern Alps. , 2007, , 1-14.		3
32	Abrupt changes in crustal structure beneath the Coast Ranges of northern California - developing new techniques in receiver function analysis. Geophysical Journal International, 2007, 170, 313-336.	1.0	15
33	INFLUENCE OF THE MENDOCINO TRIPLE JUNCTION ON THE TECTONICS OF COASTAL CALIFORNIA. Annual Review of Earth and Planetary Sciences, 2004, 32, 403-433.	4.6	87
34	Fault creep and microseismicity on the Hayward fault, California: Implications for asperity size. Geophysical Research Letters, 2003, 30, .	1.5	14
35	Dynamic uplift in a transpressional regime: numerical model of the subduction area of Fiordland, New Zealand. Earth and Planetary Science Letters, 2003, 206, 349-364.	1.8	23
36	The Mendocino Crustal Conveyor: Making and Breaking the California Crust. International Geology Review, 2003, 45, 767-779.	1.1	15

#	Article	IF	CITATIONS
37	Migration of the Mendocino triple junction and ephemeral crustal deformation: Implications for California Coast range heat flow. Geophysical Research Letters, 2002, 29, 12-1.	1.5	23
38	Thermal-rheological controls on deformation within oceanic transforms. Geological Society Special Publication, 2001, 186, 65-83.	0.8	11
39	Ephemeral crustal thickening at a triple junction:The Mendocino crustal conveyor. Geology, 1999, 27, 127.	2.0	62
40	Plate boundary deformation between the Pacific and North America in the Explorer region. Tectonophysics, 1998, 293, 225-238.	0.9	19
41	Subsidence of San Francisco Bay: Blame it on Salinia. Geology, 1995, 23, 559.	2.0	6
42	Ephemeral plate tectonics at the Queen Charlotte triple junction. Geology, 1995, 23, 1035.	2.0	59
43	Thermal structure of the continental lithosphere: constraints from seismic tomography. Tectonophysics, 1995, 244, 107-117.	0.9	33
44	Intrusion and underplating of mafic magmas: thermal-rheological effects and implications for Tertiary tectonomagmatism in the North American Cordillera. Tectonophysics, 1994, 237, 175-187.	0.9	22
45	Thermal-rheologic evolution of the upper mantle and the development of the San Andreas fault system. Tectonophysics, 1993, 223, 149-164.	0.9	47
46	Seismicity and thermal structure along the northern San Andreas Fault system, California, USA. Tectonophysics, 1993, 217, 23-30.	0.9	6
47	Crustal shortening and Eocene extension in the southeastern Canadian Cordillera: Some thermal and rheological considerations. Tectonics, 1993, 12, 776-786.	1.3	34
48	Stress accumulation and release at complex transform plate boundaries. Geophysical Research Letters, 1992, 19, 1967-1970.	1.5	7
49	Cenozoic volcanism in the California Coast Ranges: Numerical solutions. Journal of Geophysical Research, 1992, 97, 4941-4951.	3.3	56
50	Geodynamic aspects of the Loma Prieta Earthquake. Geophysical Research Letters, 1990, 17, 1457-1460.	1.5	29
51	Geometry and evolution of the San Andreas Fault Zone in northern California. Journal of Geophysical Research, 1989, 94, 3100-3110.	3.3	101
52	Thermalâ€mechanical controls on seismicity depth distributions in the San Andreas Fault Zone. Geophysical Research Letters, 1988, 15, 1429-1432.	1.5	35
53	Heat production and thermal conductivity of rocks from the Pikwitonei–Sachigo continental cross section, central Manitoba: implications for the thermal structure of Archean crust. Canadian Journal of Earth Sciences, 1987, 24, 1583-1594.	0.6	95
54	Introduction: Background and implications of the linear heat flowâ€heat production relationship. Geophysical Research Letters, 1987, 14, 248-251.	1.5	24

#	Article	IF	CITATIONS
55	A heat production model of a shield area and its implications for the heat flow ―Heat production relationship. Geophysical Research Letters, 1987, 14, 283-286.	1.5	28
56	Crustal heterogeneities and the thermal structure of the continental crust. Geophysical Research Letters, 1987, 14, 314-317.	1.5	85
57	Thermal state of the lithosphere. Reviews of Geophysics, 1987, 25, 1255-1264.	9.0	25
58	Rapid secular variation recorded in thick Eocene flows from the Absaroka Mountains of northwest Wyoming. Earth and Planetary Science Letters, 1987, 81, 419-424.	1.8	7
59	Continental crustal underplating: Thermal considerations and seismicâ€petrologic consequences. Journal of Geophysical Research, 1986, 91, 8285-8294.	3.3	344
60	Tectonic loading and subsidence of intermontane basins: Wyoming foreland province. Geology, 1985, 13, 585.	2.0	37
61	Thermal-mechanical modeling of the role of thermal stresses and stoping in magma contamination. Journal of Volcanology and Geothermal Research, 1985, 24, 179-191.	0.8	58
62	Lithospheric behavior with triple junction migration: an example based on the Mendocino triple junction. Physics of the Earth and Planetary Interiors, 1984, 36, 213-223.	0.7	67
63	Determination of timing of volcanic events by secular variation and thermal modeling. Geophysical Research Letters, 1983, 10, 701-704.	1.5	3
64	Evolution and thickness of the lithosphere beneath coastal California. Geology, 1982, 10, 376.	2.0	90
65	Thermal modeling of the geometry of subduction with implications for the tectonics of the overriding plate. Journal of Geophysical Research, 1982, 87, 1786-1802.	3.3	72
66	Roll cell mantle convection under the Pacific plate. Nature, 1978, 274, 145-147.	13.7	5
67	Hydrocarbon Maturation in Thrust Belts: Thermal Considerations. Geophysical Monograph Series, 0, , 137-144.	0.1	4