
Baris Tursun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1097816/publications.pdf Version: 2024-02-01

RADIC TUDCUM

#	Article	IF	CITATIONS
1	Robust co-immunoprecipitation with mass spectrometry for <i>Caenorhabditis elegans</i> using solid-phase enhanced sample preparation. BioTechniques, 2022, 72, 175-184.	1.8	2
2	SUMOylation of the chromodomain factor MRG-1 in <i>C. elegans</i> affects chromatin-regulatory dynamics. BioTechniques, 2022, 73, 5-17.	1.8	6
3	The CONJUDOR pipeline for multiplexed knockdown of gene pairs identifies RBBP-5 as a germ cell reprogramming barrier in <i>C. elegans</i> . Nucleic Acids Research, 2021, 49, e22-e22.	14.5	2
4	The pseudogene is required to safeguard germ cells against reprogramming. MicroPublication Biology, 2021, 2021, .	0.1	0
5	Induced Neurons From Germ Cells in Caenorhabditis elegans. Frontiers in Neuroscience, 2021, 15, 771687.	2.8	6
6	Conversion of Germ Cells to Somatic Cell Types in C. elegans. Journal of Developmental Biology, 2020, 8, 24.	1.7	3
7	Epigenetic chaperoning of aging. Aging, 2020, 12, 1044-1046.	3.1	1
8	The conserved histone chaperone LINâ€53 is required for normal lifespan and maintenance of muscle integrity in <i>Caenorhabditis elegans</i> . Aging Cell, 2019, 18, e13012.	6.7	13
9	Strategies for in vivo reprogramming. Current Opinion in Cell Biology, 2019, 61, 9-15.	5.4	19
10	CRISPR-activation-based screen reveals neuronal fate promotion by polycomb repressive complex 2 during direct reprogramming. Stem Cell Investigation, 2019, 6, 32-32.	3.0	0
11	HOT or not: examining the basis of high-occupancy target regions. Nucleic Acids Research, 2019, 47, 5735-5745.	14.5	41
12	Caenorhabditis elegans and systems biology—it is â€~systems' all the way down!. Current Opinion in Systems Biology, 2019, 13, iv-vi.	2.6	0
13	MRG-1/MRG15 Is a Barrier for Germ Cell to Neuron Reprogramming in <i>Caenorhabditis elegans</i> . Genetics, 2019, 211, 121-139.	2.9	38
14	Application of RNAi and Heat-shock-induced Transcription Factor Expression to Reprogram Germ Cells to Neurons in C. elegans . Journal of Visualized Experiments, 2018, , .	0.3	5
15	Determinants of promoter and enhancer transcription directionality in metazoans. Nature Communications, 2018, 9, 4472.	12.8	22
16	FACT Sets a Barrier for Cell Fate Reprogramming in Caenorhabditis elegans and Human Cells. Developmental Cell, 2018, 46, 611-626.e12.	7.0	89
17	Transdifferentiation: do transition states lie on the path of development?. Current Opinion in Systems Biology, 2018, 11, 18-23.	2.6	17
18	Neuronal inhibition of the autophagy nucleation complex extends life span in post-reproductive <i>C. elegans</i> . Genes and Development, 2017, 31, 1561-1572.	5.9	67

BARIS TURSUN

#	Article	IF	CITATIONS
19	A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large. BMC Biology, 2016, 14, 66.	3.8	40
20	Increasing Notch signaling antagonizes PRC2-mediated silencing to promote reprograming of germ cells into neurons. ELife, 2016, 5, .	6.0	45
21	Two distinct types of neuronal asymmetries are controlled by the <i>Caenorhabditis elegans</i> zinc finger transcription factor <i>die-1</i> . Genes and Development, 2014, 28, 34-43.	5.9	29
22	Cellular reprogramming processes in Drosophila and C. elegans. Current Opinion in Genetics and Development, 2012, 22, 475-484.	3.3	6
23	Removal of Polycomb Repressive Complex 2 Makes C.Âelegans Germ Cells Susceptible to Direct Conversion into Specific Somatic Cell Types. Cell Reports, 2012, 2, 1178-1186.	6.4	119
24	Direct Conversion of <i>C. elegans</i> Germ Cells into Specific Neuron Types. Science, 2011, 331, 304-308.	12.6	219
25	The Groucho ortholog UNC-37 interacts with the short Groucho-like protein LSY-22 to control developmental decisions in <i>C. elegans</i> . Development (Cambridge), 2010, 137, 1799-1805.	2.5	31
26	Neuron-type specific regulation of a 3′UTR through redundant and combinatorially acting <i>cis</i> -regulatory elements. Rna, 2010, 16, 349-363.	3.5	16
27	A Toolkit and Robust Pipeline for the Generation of Fosmid-Based Reporter Genes in C. elegans. PLoS ONE, 2009, 4, e4625.	2.5	160
28	The <i>C. elegans</i> Tailless/TLX transcription factor <i>nhr-67</i> controls neuronal identity and left/right asymmetric fate diversification. Development (Cambridge), 2009, 136, 2933-2944.	2.5	42
29	Regulation of Estrogen-Dependent Transcription by the LIM Cofactors CLIM and RLIM in Breast Cancer. Cancer Research, 2009, 69, 128-136.	0.9	57
30	Proteasomal selection of multiprotein complexes recruited by LIM homeodomain transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15000-15005.	7.1	46
31	Dynamic expression of LIM cofactors in the developing mouse neural tube. Developmental Dynamics, 2006, 235, 786-791.	1.8	29
32	The ubiquitin ligase Rnf6 regulates local LIM kinase 1 levels in axonal growth cones. Genes and Development, 2005, 19, 2307-2319.	5.9	98
33	Mitochondrial signal peptidases of yeast: The rhomboid peptidase Pcp1 and its substrate cytochrome c peroxidase. Gene, 2005, 354, 58-63.	2.2	24
34	Comparing protein stabilities during zebrafish embryogenesis. Cytotechnology, 2003, 25, 85-89.	0.7	5
35	A Novel Two-step Mechanism for Removal of a Mitochondrial Signal Sequence Involves the mAAA Complex and the Putative Rhomboid Protease Pcp1. Journal of Molecular Biology, 2002, 323, 835-843.	4.2	169
36	The UNC-83/UNC-84 LINC members are required for body wall muscle nuclei positioning in C. elegans . Matters Select, 0, , .	3.0	0