João P C Tomé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10977781/publications.pdf

Version: 2024-02-01

92 papers 5,730 citations

71102 41 h-index 76900 74 g-index

95 all docs 95
docs citations

95 times ranked 6642 citing authors

#	Article	IF	Citations
1	Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 2015, 44, 6774-6803.	38.1	766
2	Ligand design for functional metal–organic frameworks. Chemical Society Reviews, 2012, 41, 1088-1110.	38.1	725
3	Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment. Marine Drugs, 2010, 8, 91-105.	4.6	340
4	Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiology, 2009, 9, 70.	3.3	190
5	Synthesis and Antibacterial Activity of New Poly-S-lysineâ^'Porphyrin Conjugates. Journal of Medicinal Chemistry, 2004, 47, 6649-6652.	6.4	148
6	Synthesis of glycoporphyrin derivatives and their antiviral activity against herpes simplex virus types 1 and 2. Bioorganic and Medicinal Chemistry, 2005, 13, 3878-3888.	3.0	128
7	Functional Cationic Nanomagnetâ^'Porphyrin Hybrids for the Photoinactivation of Microorganisms. ACS Nano, 2010, 4, 7133-7140.	14.6	112
8	Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics. Photochemical and Photobiological Sciences, 2014, 13, 626-633.	2.9	112
9	Energy and Electron Transfer in Polyacetylene-Linked Zinc-Porphyrin-[60]Fullerene Molecular Wires. Chemistry - A European Journal, 2005, 11, 3375-3388.	3.3	110
10	Mechanisms of photodynamic inactivation of a Gram-negative recombinant bioluminescent bacterium by cationic porphyrins. Photochemical and Photobiological Sciences, 2011, 10, 1659-1669.	2.9	106
11	Photodynamic Inactivation of Bacterial and Yeast Biofilms With a Cationic Porphyrin. Photochemistry and Photobiology, 2014, 90, 1387-1396.	2.5	104
12	Photodynamic inactivation of bacteria: finding the effective targets. Future Medicinal Chemistry, 2015, 7, 1221-1224.	2.3	103
13	Photoinactivation of bacteria in wastewater by porphyrins: Bacterial \hat{l}^2 -galactosidase activity and leucine-uptake as methods to monitor the process. Journal of Photochemistry and Photobiology B: Biology, 2007, 88, 112-118.	3.8	93
14	Porphyrin and phthalocyanine glycodendritic conjugates: synthesis, photophysical and photochemical properties. Chemical Communications, 2012, 48, 3608.	4.1	93
15	Synthesis and Photophysical Properties of Thioglycosylated Chlorins, Isobacteriochlorins, and Bacteriochlorins for Bioimaging and Diagnostics. Bioconjugate Chemistry, 2010, 21, 2136-2146.	3.6	91
16	Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT. Antiviral Research, 2011, 91, 278-282.	4.1	89
17	Amphiphilic phthalocyanine–cyclodextrin conjugates for cancer photodynamic therapy. Chemical Communications, 2014, 50, 8363-8366.	4.1	84
18	Photodynamic inactivation of Penicillium chrysogenum conidia by cationic porphyrins. Photochemical and Photobiological Sciences, 2011, 10, 1735-1743.	2.9	82

#	Article	IF	CITATIONS
19	Photodynamic inactivation of recombinant bioluminescent Escherichia coli by cationic porphyrins under artificial and solar irradiation. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1447-1454.	3.0	81
20	Sewage bacteriophage photoinactivation by cationic porphyrins: a study of charge effect. Photochemical and Photobiological Sciences, 2008, 7, 415.	2.9	80
21	Porphyrin-Based Metal-Organic Frameworks as Heterogeneous Catalysts in Oxidation Reactions. Molecules, 2016, 21, 1348.	3.8	80
22	Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters. Photochemical and Photobiological Sciences, 2010, 9, 1126.	2.9	71
23	Synthesis of water-soluble phthalocyanines bearing four or eight d-galactose units. Carbohydrate Research, 2009, 344, 507-510.	2.3	68
24	Photodynamic Antimicrobial Chemotherapy in Aquaculture: Photoinactivation Studies of Vibrio fischeri. PLoS ONE, 2011, 6, e20970.	2.5	67
25	Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers. PLoS ONE, 2017, 12, e0177737.	2.5	64
26	Phthalocyanine Thioâ€Pyridinium Derivatives as Antibacterial Photosensitizers ^{â€} . Photochemistry and Photobiology, 2012, 88, 537-547.	2.5	60
27	Comparative photodynamic inactivation of antibiotic resistant bacteria by first and second generation cationic photosensitizers. Photochemical and Photobiological Sciences, 2012, 11, 1905-1913.	2.9	55
28	Antibodies armed with photosensitizers: from chemical synthesis to photobiological applications. Organic and Biomolecular Chemistry, 2015, 13, 2518-2529.	2.8	55
29	Lanthanide-polyphosphonate coordination polymers combining catalytic and photoluminescence properties. Chemical Communications, 2013, 49, 6400.	4.1	51
30	Synthesis of neutral and cationic tripyridylporphyrin-d-galactose conjugates and the photoinactivation of HSV-1. Bioorganic and Medicinal Chemistry, 2007, 15, 4705-4713.	3.0	50
31	Multi-functional metal–organic frameworks assembled from a tripodal organic linker. Journal of Materials Chemistry, 2012, 22, 18354.	6.7	50
32	Galactodendritic Phthalocyanine Targets Carbohydrate-Binding Proteins Enhancing Photodynamic Therapy. PLoS ONE, 2014, 9, e95529.	2.5	50
33	Use of Photosensitizers in Semisolid Formulations for Microbial Photodynamic Inactivation. Journal of Medicinal Chemistry, 2016, 59, 4428-4442.	6.4	50
34	Photodynamic oxidation of <i>Escherichia coli</i> membrane phospholipids: new insights based on lipidomics. Rapid Communications in Mass Spectrometry, 2013, 27, 2717-2728.	1.5	48
35	Porphyrin–Phthalocyanine/Pyridylfullerene Supramolecular Assemblies. Chemistry - A European Journal, 2012, 18, 3210-3219.	3.3	46
36	Photoimmunoconjugates: novel synthetic strategies to target and treat cancer by photodynamic therapy. Organic and Biomolecular Chemistry, 2019, 17, 2579-2593.	2.8	46

#	Article	IF	CITATIONS
37	Involvement of type I and type II mechanisms on the photoinactivation of non-enveloped DNA and RNA bacteriophages. Journal of Photochemistry and Photobiology B: Biology, 2013, 120, 10-16.	3.8	45
38	Multifunctional micro- and nanosized metal–organic frameworks assembled from bisphosphonates and lanthanides. Journal of Materials Chemistry C, 2014, 2, 3311.	5.5	44
39	New Materials Based on Cationic Porphyrins Conjugated to Chitosan or Titanium Dioxide: Synthesis, Characterization and Antimicrobial Efficacy. International Journal of Molecular Sciences, 2019, 20, 2522.	4.1	44
40	New platinum(II)–bipyridyl corrole complexes: Synthesis, characterization and binding studies with DNA and HSA. Journal of Inorganic Biochemistry, 2015, 153, 32-41.	3.5	43
41	Bifunctional Porphyrin-Based Nano-Metal–Organic Frameworks: Catalytic and Chemosensing Studies. Inorganic Chemistry, 2018, 57, 3855-3864.	4.0	43
42	Synthesis of cationic \hat{l}^2 -vinyl substituted meso-tetraphenylporphyrins and their in vitro activity against herpes simplex virus type 1. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3333-3337.	2.2	42
43	Nucleic acid changes during photodynamic inactivation of bacteria by cationic porphyrins. Bioorganic and Medicinal Chemistry, 2013, 21, 4311-4318.	3.0	42
44	Porphyrin conjugated with serum albumins and monoclonal antibodies boosts efficiency in targeted destruction of human bladder cancer cells. Organic and Biomolecular Chemistry, 2014, 12, 1804.	2.8	41
45	Susceptibility of non-enveloped DNA- and RNA-type viruses to photodynamic inactivation. Photochemical and Photobiological Sciences, 2012, 11, 1520-1523.	2.9	38
46	Mitochondria-Targeted Photodynamic Therapy with a Galactodendritic Chlorin to Enhance Cell Death in Resistant Bladder Cancer Cells. Bioconjugate Chemistry, 2016, 27, 2762-2769.	3.6	37
47	Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems. Photochemical and Photobiological Sciences, 2011, 10, 1691-1700.	2.9	36
48	Inverted methoxypyridinium phthalocyanines for PDI of pathogenic bacteria. Photochemical and Photobiological Sciences, 2015, 14, 1853-1863.	2.9	36
49	Photodynamic oxidation of <i>Staphylococcus warneri</i> membrane phospholipids: new insights based on lipidomics. Rapid Communications in Mass Spectrometry, 2013, 27, 1607-1618.	1.5	34
50	The role of galectin-1 in inÂvitro and inÂvivo photodynamic therapy with a galactodendritic porphyrin. European Journal of Cancer, 2016, 68, 60-69.	2.8	32
51	Hydrogels containing porphyrin-loaded nanoparticles for topical photodynamic applications. International Journal of Pharmaceutics, 2016, 510, 221-231.	5.2	32
52	Synthesis of Glycoporphyrins. Topics in Heterocyclic Chemistry, 2007, , 179-248.	0.2	30
53	Synthesis, characterization and biomolecule-binding properties of novel tetra-platinum(<scp>ii</scp>)-thiopyridylporphyrins. Dalton Transactions, 2015, 44, 530-538.	3.3	29
54	The role of surface functionalization of silica nanoparticles for bioimaging. Journal of Innovative Optical Health Sciences, 2016, 09, 1630005.	1.0	29

#	Article	IF	CITATIONS
55	Towards hydroxamic acid linked zirconium metal–organic frameworks. Materials Chemistry Frontiers, 2017, 1, 1194-1199.	5.9	29
56	Carbon-1 versus Carbon-3 Linkage of <scp>d</scp> -Galactose to Porphyrins: Synthesis, Uptake, and Photodynamic Efficiency. Bioconjugate Chemistry, 2018, 29, 306-315.	3.6	29
57	Photoinactivation of Planktonic and Biofilm Forms of <i>Escherichia coli</i> through the Action of Cationic Zinc(II) Phthalocyanines. ChemPhotoChem, 2019, 3, 251-260.	3.0	28
58	Cationic galactoporphyrin photosensitisers against UV-B resistant bacteria: oxidation of lipids and proteins by 102. Photochemical and Photobiological Sciences, 2013, 12, 262-271.	2.9	27
59	Photodynamic inactivation of Escherichia coli with cationic ammonium Zn(ii) phthalocyanines. Photochemical and Photobiological Sciences, 2015, 14, 1872-1879.	2.9	25
60	Porphyrin modified trastuzumab improves efficacy of HER2 targeted photodynamic therapy of gastric cancer. International Journal of Cancer, 2017, 141, 1478-1489.	5.1	24
61	Chain-dependent photocytotoxicity of tricationic porphyrin conjugates and related mechanisms of cell death in proliferating human skin keratinocytes. Biochemical Pharmacology, 2010, 80, 1373-1385.	4.4	23
62	Photosensitized oxidation of phosphatidylethanolamines monitored by electrospray tandem mass spectrometry. Journal of Mass Spectrometry, 2013, 48, 1357-1365.	1.6	21
63	Photoluminescent layered lanthanide–organic framework based on a novel trifluorotriphosphonate organic linker. CrystEngComm, 2014, 16, 344-358.	2.6	21
64	Photoâ€inactivation of <i>Bacillus</i> endospores: interâ€specific variability of inactivation efficiency. Microbiology and Immunology, 2012, 56, 692-699.	1.4	20
65	Enhancement of the photodynamic activity of tri-cationic porphyrins towards proliferating keratinocytes by conjugation to poly-S-lysine. Photochemical and Photobiological Sciences, 2006, 5, 126-133.	2.9	19
66	Structural Diversity of Lanthanum–Organic Frameworks Based on 1,4-Phenylenebis(methylene)diphosphonic Acid. Crystal Growth and Design, 2013, 13, 543-560.	3.0	19
67	Synthesis and fluorescence properties of a porphyrin–fullerene molecular wire. Journal of Physical Organic Chemistry, 2004, 17, 814-818.	1.9	18
68	Unsymmetrical cationic porphyrin-cyclodextrin bioconjugates for photoinactivation of Escherichia coli. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101788.	2.6	17
69	Layered Metal–Organic Frameworks Based on Octahedral Lanthanides and a Phosphonate Linker: Control of Crystal Size. Crystal Growth and Design, 2014, 14, 4873-4877.	3.0	16
70	Characterization of cationic glycoporphyrins by electrospray tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 3605-3611.	1.5	15
71	Compromising the plasma membrane as a secondary target in photodynamic therapy-induced necrosis. Bioorganic and Medicinal Chemistry, 2018, 26, 5224-5228.	3.0	14
72	Spherical and rod shaped mesoporous silica nanoparticles for cancer-targeted and photosensitizer delivery in photodynamic therapy. Journal of Materials Chemistry B, 2022, 10, 3248-3259.	5.8	14

#	Article	IF	CITATIONS
73	Synthesis, Characterization and Photodynamic Activity against Bladder Cancer Cells of Novel Triazole-Porphyrin Derivatives. Molecules, 2020, 25, 1607.	3.8	13
74	Reduction of cationic free-base meso-tris-N-methylpyridinium-4-yl porphyrins in positive mode electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2007, 18, 762-768.	2.8	11
75	Porphyrin-based photosensitizers and their DNA conjugates for singlet oxygen induced nucleic acid interstrand crosslinking. Organic and Biomolecular Chemistry, 2017, 15, 5402-5409.	2.8	11
76	Electrospray Tandem Mass Spectrometry of \hat{I}^2 -Nitroalkenyl <i>Meso</i> -Tetraphenylporphyrins. European Journal of Mass Spectrometry, 2008, 14, 49-59.	1.0	9
77	Synthesis and differentiation of $\hat{l}\pm\hat{a}$ -and $\hat{l}^2\hat{a}$ -glycoporphyrin stereoisomers by electrospray tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 3478-3483.	1.5	9
78	Synthesis and Characterization of New Crossâ€like Porphyrin–Naphthalocyanine and Porphyrin–Phthalocyanine Pentads. Journal of Heterocyclic Chemistry, 2014, 51, E202.	2.6	9
79	Tricationic Porphyrin Conjugates: Evidence for Chain-Structure-Dependent Relaxation of Excited Singlet and Triplet States. Journal of Physical Chemistry B, 2009, 113, 16695-16704.	2.6	7
80	Phthalocyanine-Functionalized Magnetic Silica Nanoparticles as Anion Chemosensors. Sensors, 2021, 21, 1632.	3.8	7
81	Multidimensional Transition Metal Complexes Based on 3-Amino-1H-1,2,4-triazole-5-carboxylic Acid: From Discrete Mononuclear Complexes to Layered Materials. Molecules, 2015, 20, 12341-12363.	3.8	6
82	Coordination polymers based on a glycine-derivative ligand. CrystEngComm, 2014, 16, 8119-8137.	2.6	5
83	Unprecedented Double azaâ€Michael Addition within a Sapphyrin Core. Chemistry - A European Journal, 2016, 22, 14349-14355.	3.3	5
84	Antimicrobial Photodynamic Activity of Cationic Nanoparticles Decorated with Glycosylated Photosensitizers for Water Disinfection. ChemPhotoChem, 2018, 2, 596-605.	3.0	5
85	Encapsulation of glycosylated porphyrins in silica nanoparticles to enhance the efficacy of cancer photodynamic therapy. Materials Advances, 2021, 2, 1613-1620.	5.4	5
86	Metal–organic framework assembled from erbium and a tetrapodal polyphosphonic acid organic linker. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 752-759.	0.5	4
87	5-[4-(Diethoxyphosphoryl)-2,3,5,6-tetrafluorophenyl]-10,15,20-tris(pentafluorophenyl)porphyrin. Acta Crystallographica Section C: Crystal Structure Communications, 2012, 68, o104-o107.	0.4	3
88	Molecular Targeted Photodynamic Therapy for Cancer. , 2016, , 127-169.		3
89	Iron(III) Complexation with Galactodendritic Porphyrin Species and Hydrocarbons' Oxidative Transformations. European Journal of Inorganic Chemistry, 2021, 2021, 2857-2869.	2.0	2
90	5,10,15,20-Tetrakis(1-methylpyridinium-4-yl)porphyrin tetraiodide tetrahydrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, 03157-03158.	0.2	1

João P C Tomé

#	Article	IF	CITATIONS
91	Crystal structure of a compact three-dimensional metal–organic framework based on Cs ⁺ and (4,5-dicyano-1,2-phenylene)bis(phosphonic acid). Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 1794-1798.	0.5	1
92	Coordination Polymers Based on a Biphenyl Tetraphosphonate Linker: Synthesis Control and Photoluminescence. Molecules, 2020, 25, 1835.	3.8	0