Young Jun Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10977513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stable Infrared-Emitting Chemical Composition Gradient Quantum Dots for Down-Convertors and Photodetectors. ACS Applied Nano Materials, 2020, 3, 11335-11343.	2.4	3
2	Tailoring interfacial carrier dynamics <i>via</i> rationally designed uniform CsPbBr _x I _{3â^²x} quantum dots for high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 26098-26108.	5.2	15
3	Enabling Tailorable Optical Properties and Markedly Enhanced Stability of Perovskite Quantum Dots by Permanently Ligating with Polymer Hairs. Advanced Materials, 2019, 31, e1901602.	11.1	119
4	Robust lasing modes in coupled colloidal quantum dot microdisk pairs using a non-Hermitian exceptional point. Nature Communications, 2019, 10, 561.	5.8	32
5	Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Science Advances, 2019, 5, eaax4424.	4.7	116
6	Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1391-E1400.	3.3	106
7	Synthesis and Characterizations of Plasmonic Nanoparticles: Large Plain Au and Au/TiO <inf>2</inf> Core-Shell Nanoparticles. , 2018, , .		0
8	To Etch or not to Etch. , 2018, , .		1
9	All-Inorganic Perovskite Nanocrystals with a Stellar Set of Stabilities and Their Use in White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 37267-37276.	4.0	82
10	Largeâ€Area Lasing and Multicolor Perovskite Quantum Dot Patterns. Advanced Optical Materials, 2018, 6, 1800474.	3.6	95
11	Spectral and directional properties of elliptical quantum-dot microlasers. Journal of Photonics for Energy, 2018, 8, 1.	0.8	2
12	Robust, Uniform, and Highly Emissive Quantum Dot–Polymer Films and Patterns Using Thiol–Ene Chemistry. ACS Applied Materials & Interfaces, 2017, 9, 17435-17448.	4.0	32
13	Decay-to-Recovery Behavior and on–off Recovery of Photoluminescence Intensity from Core/Shell Quantum Dots. ACS Photonics, 2017, 4, 1691-1704.	3.2	10
14	Large‣cale Robust Quantum Dot Microdisk Lasers with Controlled High Quality Cavity Modes. Advanced Optical Materials, 2017, 5, 1700011.	3.6	21
15	High-Resolution Quantum Dot Photopatterning via Interference Lithography Assisted Microstamping. Journal of Physical Chemistry C, 2017, 121, 13370-13380.	1.5	14
16	Innenrücktitelbild: Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Nearâ€Infrared Absorption (Angew. Chem.) Tj ETQ	q01060 rgB	T /Øverlock 1

17	Hairy Uniform Permanently Ligated Hollow Nanoparticles with Precise Dimension Control and Tunable Optical Properties. Journal of the American Chemical Society, 2017, 139, 12956-12967.	6.6	107
18	Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Nearâ€Infrared Absorption. Angewandte Chemie, 2017, 129, 13126-13131.	1.6	8

#	Article	IF	CITATIONS
19	Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Nearâ€Infrared Absorption. Angewandte Chemie - International Edition, 2017, 56, 12946-12951.	7.2	34
20	Dewetting-Induced Photoluminescent Enhancement of Poly(lauryl methacrylate)/Quantum Dot Thin Films. Langmuir, 2017, 33, 14325-14331.	1.6	6
21	Programmed Emission Transformations: Negativeâ€ŧoâ€₽ositive Patterning Using the Decayâ€ŧoâ€Recovery Behavior of Quantum Dots. Advanced Optical Materials, 2017, 5, 1600509.	3.6	8
22	Parity-Time Symmetry and Coupling Effects in Quantum Dot MicroDisk Lasers. , 2017, , .		1
23	Influence of Defects on the Spectral and Directional Properties of Quantum-Dot Microdisk Lasers. , 2017, , .		0
24	Crafting Core/Graded Shell–Shell Quantum Dots with Suppressed Reâ€absorption and Tunable Stokes Shift as High Optical Gain Materials. Angewandte Chemie - International Edition, 2016, 55, 5071-5075.	7.2	42
25	Largeâ€Area Multicolor Emissive Patterns of Quantum Dot–Polymer Films via Targeted Recovery of Emission Signature. Advanced Optical Materials, 2016, 4, 608-619.	3.6	27
26	Semiconducting organic–inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods. Nanoscale, 2016, 8, 8887-8898.	2.8	15
27	Enhancement of optical gain characteristics of quantum dot films by optimization of organic ligands. Journal of Materials Chemistry C, 2016, 4, 10069-10081.	2.7	19
28	Intimate organic–inorganic nanocomposites via rationally designed conjugated polymer-grafted precursors. Nanoscale, 2016, 8, 16520-16527.	2.8	6
29	Precisely Sizeâ€Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star‣ike Block Copolymers. Small, 2016, 12, 6714-6723.	5.2	68
30	Crafting Core/Graded Shell–Shell Quantum Dots with Suppressed Reâ€absorption and Tunable Stokes Shift as High Optical Gain Materials. Angewandte Chemie, 2016, 128, 5155-5159.	1.6	8
31	Core/Alloyed-Shell Quantum Dot Robust Solid Films with High Optical Gains. ACS Photonics, 2016, 3, 647-658.	3.2	45
32	Ab Initio Simulation of Charge Transfer at the Semiconductor Quantum Dot/TiO ₂ Interface in Quantum Dotâ€Sensitized Solar Cells. Particle and Particle Systems Characterization, 2015, 32, 80-90.	1.2	33
33	Organicâ€inorganic nanocomposites composed of conjugated polymers and semiconductor nanocrystals for photovoltaics. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1641-1660.	2.4	28
34	Preparation and properties of sulfonated poly(arylene ether sulfone)/hydrophilic oligomer-g-CNT composite membranes for PEMFC. Macromolecular Research, 2013, 21, 1138-1144.	1.0	9
35	Sulfonated poly(arylene ether sulfone)/sulfonated zeolite composite membrane for high temperature proton exchange membrane fuel cells. Solid State Ionics, 2013, 233, 55-61.	1.3	54
36	Modification of hydrocarbon structure for polymer electrolyte membrane fuel cell binder application. International Journal of Hydrogen Energy, 2012, 37, 13452-13461.	3.8	9

#	Article	IF	CITATIONS
37	Sulfonated poly(arylene ether sulfone)/disulfonated silsesquioxane hybrid proton conductors for proton exchange membrane fuel cell application. International Journal of Hydrogen Energy, 2012, 37, 18981-18988.	3.8	11
38	Fabrication and Properties of Reinforced Membranes Based on Sulfonated Poly(arylene ether sulfone) Copolymers for Protonâ€Exchange Membrane Fuel Cells. Macromolecular Chemistry and Physics, 2012, 213, 839-846.	1.1	19
39	Sulfonated poly(arylene ether sulfone)/functionalized silicate hybrid proton conductors for high-temperature proton exchange membrane fuel cells. Journal of Membrane Science, 2011, 381, 204-210.	4.1	29
40	Low temperature decal transfer method for hydrocarbon membrane based membrane electrode assemblies in polymer electrolyte membrane fuel cells. Journal of Power Sources, 2011, 196, 9800-9809.	4.0	33