Young Jun Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10977513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enabling Tailorable Optical Properties and Markedly Enhanced Stability of Perovskite Quantum Dots by Permanently Ligating with Polymer Hairs. Advanced Materials, 2019, 31, e1901602.	21.0	119
2	Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities. Science Advances, 2019, 5, eaax4424.	10.3	116
3	Hairy Uniform Permanently Ligated Hollow Nanoparticles with Precise Dimension Control and Tunable Optical Properties. Journal of the American Chemical Society, 2017, 139, 12956-12967.	13.7	107
4	Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1391-E1400.	7.1	106
5	Largeâ€Area Lasing and Multicolor Perovskite Quantum Dot Patterns. Advanced Optical Materials, 2018, 6, 1800474.	7.3	95
6	All-Inorganic Perovskite Nanocrystals with a Stellar Set of Stabilities and Their Use in White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 37267-37276.	8.0	82
7	Precisely Sizeâ€Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Starâ€Like Block Copolymers. Small, 2016, 12, 6714-6723.	10.0	68
8	Sulfonated poly(arylene ether sulfone)/sulfonated zeolite composite membrane for high temperature proton exchange membrane fuel cells. Solid State Ionics, 2013, 233, 55-61.	2.7	54
9	Core/Alloyed-Shell Quantum Dot Robust Solid Films with High Optical Gains. ACS Photonics, 2016, 3, 647-658.	6.6	45
10	Crafting Core/Graded Shell–Shell Quantum Dots with Suppressed Reâ€absorption and Tunable Stokes Shift as High Optical Gain Materials. Angewandte Chemie - International Edition, 2016, 55, 5071-5075.	13.8	42
11	Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Nearâ€Infrared Absorption. Angewandte Chemie - International Edition, 2017, 56, 12946-12951.	13.8	34
12	Low temperature decal transfer method for hydrocarbon membrane based membrane electrode assemblies in polymer electrolyte membrane fuel cells. Journal of Power Sources, 2011, 196, 9800-9809.	7.8	33
13	Ab Initio Simulation of Charge Transfer at the Semiconductor Quantum Dot/TiO ₂ Interface in Quantum Dotâ€Sensitized Solar Cells. Particle and Particle Systems Characterization, 2015, 32, 80-90.	2.3	33
14	Robust, Uniform, and Highly Emissive Quantum Dot–Polymer Films and Patterns Using Thiol–Ene Chemistry. ACS Applied Materials & Interfaces, 2017, 9, 17435-17448.	8.0	32
15	Robust lasing modes in coupled colloidal quantum dot microdisk pairs using a non-Hermitian exceptional point. Nature Communications, 2019, 10, 561.	12.8	32
16	Sulfonated poly(arylene ether sulfone)/functionalized silicate hybrid proton conductors for high-temperature proton exchange membrane fuel cells. Journal of Membrane Science, 2011, 381, 204-210.	8.2	29
17	Organicâ€inorganic nanocomposites composed of conjugated polymers and semiconductor nanocrystals for photovoltaics. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1641-1660.	2.1	28
18	Largeâ€Area Multicolor Emissive Patterns of Quantum Dot–Polymer Films via Targeted Recovery of Emission Signature. Advanced Optical Materials, 2016, 4, 608-619.	7.3	27

Young Jun Yoon

#	Article	IF	CITATIONS
19	Largeâ€Scale Robust Quantum Dot Microdisk Lasers with Controlled High Quality Cavity Modes. Advanced Optical Materials, 2017, 5, 1700011.	7.3	21
20	Fabrication and Properties of Reinforced Membranes Based on Sulfonated Poly(arylene ether sulfone) Copolymers for Protonâ€Exchange Membrane Fuel Cells. Macromolecular Chemistry and Physics, 2012, 213, 839-846.	2.2	19
21	Enhancement of optical gain characteristics of quantum dot films by optimization of organic ligands. Journal of Materials Chemistry C, 2016, 4, 10069-10081.	5.5	19
22	Semiconducting organic–inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods. Nanoscale, 2016, 8, 8887-8898.	5.6	15
23	Tailoring interfacial carrier dynamics <i>via</i> rationally designed uniform CsPbBr _x I _{3â^'x} quantum dots for high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 26098-26108.	10.3	15
24	High-Resolution Quantum Dot Photopatterning via Interference Lithography Assisted Microstamping. Journal of Physical Chemistry C, 2017, 121, 13370-13380.	3.1	14
25	Sulfonated poly(arylene ether sulfone)/disulfonated silsesquioxane hybrid proton conductors for proton exchange membrane fuel cell application. International Journal of Hydrogen Energy, 2012, 37, 18981-18988.	7.1	11
26	Decay-to-Recovery Behavior and on–off Recovery of Photoluminescence Intensity from Core/Shell Quantum Dots. ACS Photonics, 2017, 4, 1691-1704.	6.6	10
27	Modification of hydrocarbon structure for polymer electrolyte membrane fuel cell binder application. International Journal of Hydrogen Energy, 2012, 37, 13452-13461.	7.1	9
28	Preparation and properties of sulfonated poly(arylene ether sulfone)/hydrophilic oligomer-g-CNT composite membranes for PEMFC. Macromolecular Research, 2013, 21, 1138-1144.	2.4	9
29	Crafting Core/Graded Shell–Shell Quantum Dots with Suppressed Reâ€absorption and Tunable Stokes Shift as High Optical Gain Materials. Angewandte Chemie, 2016, 128, 5155-5159.	2.0	8
30	Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Nearâ€Infrared Absorption. Angewandte Chemie, 2017, 129, 13126-13131.	2.0	8
31	Programmed Emission Transformations: Negativeâ€ŧoâ€Positive Patterning Using the Decayâ€ŧoâ€Recovery Behavior of Quantum Dots. Advanced Optical Materials, 2017, 5, 1600509.	7.3	8
32	Intimate organic–inorganic nanocomposites via rationally designed conjugated polymer-grafted precursors. Nanoscale, 2016, 8, 16520-16527.	5.6	6
33	Dewetting-Induced Photoluminescent Enhancement of Poly(lauryl methacrylate)/Quantum Dot Thin Films. Langmuir, 2017, 33, 14325-14331.	3.5	6
34	Stable Infrared-Emitting Chemical Composition Gradient Quantum Dots for Down-Convertors and Photodetectors. ACS Applied Nano Materials, 2020, 3, 11335-11343.	5.0	3
35	Spectral and directional properties of elliptical quantum-dot microlasers. Journal of Photonics for Energy, 2018, 8, 1.	1.3	2

To Etch or not to Etch. , 2018, , .

#	Article	IF	CITATIONS
37	Parity-Time Symmetry and Coupling Effects in Quantum Dot MicroDisk Lasers. , 2017, , .		1
38	Innenrücktitelbild: Unconventional Route to Uniform Hollow Semiconducting Nanoparticles with Tailorable Dimensions, Compositions, Surface Chemistry, and Nearâ€Infrared Absorption (Angew. Chem.) Tj ETQo	ൂ0£0ൽ rgB⁻	Г / Øverlock 1
39	Synthesis and Characterizations of Plasmonic Nanoparticles: Large Plain Au and Au/TiO <inf>2</inf>		Ο

40	Influence of Defects on the Spectral and Directional Properties of Quantum-Dot Microdisk Lasers. , 2017, , .
----	--