Jeffrey C Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10976475/publications.pdf Version: 2024-02-01

IFFEDEV C MILLED

#	Article	IF	CITATIONS
1	A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 2011, 29, 143-148.	17.5	1,855
2	Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 2005, 435, 646-651.	27.8	1,512
3	Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 2011, 29, 731-734.	17.5	1,082
4	Distinct Factors Control Histone Variant H3.3 Localization at Specific Genomic Regions. Cell, 2010, 140, 678-691.	28.9	1,069
5	Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnology, 2009, 27, 851-857.	17.5	990
6	An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnology, 2007, 25, 778-785.	17.5	967
7	Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnology, 2008, 26, 808-816.	17.5	916
8	Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 2009, 459, 437-441.	27.8	862
9	Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 2008, 26, 702-708.	17.5	842
10	Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases. Science, 2009, 325, 433-433.	12.6	836
11	Targeted Genome Editing Across Species Using ZFNs and TALENs. Science, 2011, 333, 307-307.	12.6	556
12	An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nature Biotechnology, 2011, 29, 816-823.	17.5	488
13	A Rapid and General Assay for Monitoring Endogenous Gene Modification. Methods in Molecular Biology, 2010, 649, 247-256.	0.9	453
14	A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood, 2012, 119, 5697-5705.	1.4	437
15	Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nature Methods, 2011, 8, 74-79.	19.0	376
16	Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proceedings of the United States of America, 2008, 105, 5809-5814.	7.1	347
17	Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Research, 2010, 20, 1133-1142.	5.5	280
18	In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood, 2015, 126, 1777-1784.	1.4	256

JEFFREY C MILLER

#	Article	IF	CITATIONS
19	Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood, 2013, 122, 1341-1349.	1.4	243
20	Drug discovery with engineered zinc-finger proteins. Nature Reviews Drug Discovery, 2003, 2, 361-368.	46.4	237
21	Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nature Cell Biology, 2011, 13, 331-337.	10.3	233
22	Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Molecular Biology, 2009, 69, 699-709.	3.9	213
23	Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Research, 2008, 36, 3926-3938.	14.5	195
24	Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Research, 2010, 38, e152-e152.	14.5	177
25	Highly efficient deletion of <i>FUT8</i> in CHO cell lines using zincâ€finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnology and Bioengineering, 2010, 106, 774-783.	3.3	163
26	Robust ZFN-mediated genome editing in adult hemophilic mice. Blood, 2013, 122, 3283-3287.	1.4	159
27	<i>BAK</i> and <i>BAX</i> deletion using zincâ€finger nucleases yields apoptosisâ€resistant CHO cells. Biotechnology and Bioengineering, 2010, 105, 330-340.	3.3	146
28	Efficient targeted gene disruption in the soma and germ line of the frog <i>Xenopus tropicalis</i> using engineered zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7052-7057.	7.1	135
29	Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases. PLoS Pathogens, 2011, 7, e1002020.	4.7	130
30	Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Research, 2012, 22, 1316-1326.	5.5	121
31	Improved specificity of TALE-based genome editing using an expanded RVD repertoire. Nature Methods, 2015, 12, 465-471.	19.0	91
32	Generation of a tripleâ€gene knockout mammalian cell line using engineered zincâ€finger nucleases. Biotechnology and Bioengineering, 2010, 106, 97-105.	3.3	90
33	Diversifying the structure of zinc finger nucleases for high-precision genome editing. Nature Communications, 2019, 10, 1133.	12.8	79
34	Rearrangement of side-chains in a zif268 mutant highlights the complexities of zinc finger-DNA recognition. Journal of Molecular Biology, 2001, 313, 309-315.	4.2	66
35	Non-viral Delivery of Zinc Finger Nuclease mRNA Enables Highly Efficient InÂVivo Genome Editing of Multiple Therapeutic Gene Targets. Molecular Therapy, 2019, 27, 866-877.	8.2	64
36	Transcriptional activation of <i>Brassica napus</i> βâ€ketoacylâ€ACP synthase II with an engineered zinc finger protein transcription factor. Plant Biotechnology Journal, 2012, 10, 783-791.	8.3	57

JEFFREY C MILLER

#	Article	IF	CITATIONS
37	Engineered Zinc Finger Proteins for Controlling Stem Cell Fate. Stem Cells, 2003, 21, 632-637.	3.2	54
38	Enhancing gene editing specificity by attenuating DNA cleavage kinetics. Nature Biotechnology, 2019, 37, 945-952.	17.5	39
39	Engineering altered protein–DNA recognition specificity. Nucleic Acids Research, 2018, 46, 4845-4871.	14.5	36
40	Multi-reporter selection for the design of active and more specific zinc-finger nucleases for genome editing. Nature Communications, 2016, 7, 10194.	12.8	15