E Allen Foegeding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10976103/publications.pdf

Version: 2024-02-01

109	5,589	57631 44 h-index	71
papers	citations		g-index
110	110	110	3988
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Food protein functionality: A comprehensive approach. Food Hydrocolloids, 2011, 25, 1853-1864.	5.6	318
2	Factors determining the physical properties of protein foams. Food Hydrocolloids, 2006, 20, 284-292.	5.6	293
3	Rheological Study on the Fractal Nature of the Protein Gel Structure. Langmuir, 1999, 15, 8584-8589.	1.6	187
4	Enzyme-Induced Gelation of Extensively Hydrolyzed Whey Proteins by Alcalase:  Peptide Identification and Determination of Enzyme Specificity. Journal of Agricultural and Food Chemistry, 2003, 51, 6300-6308.	2.4	159
5	Combining protein micro-phase separation and protein–polysaccharide segregative phase separation to produce gel structures. Food Hydrocolloids, 2011, 25, 1538-1546.	5.6	152
6	Interactions of .alphalactalbumin and bovine serum albumin with .betalactoglobulin in thermally induced gelation. Journal of Agricultural and Food Chemistry, 1993, 41, 341-346.	2.4	137
7	Factors that determine the fracture properties and microstructure of globular protein gels. Food Hydrocolloids, 1995, 9, 237-249.	5.6	128
8	Food structure: Roles of mechanical properties and oral processing in determining sensory texture of soft materials. Current Opinion in Colloid and Interface Science, 2013, 18, 324-333.	3.4	127
9	Whey protein–pectin soluble complexes for beverage applications. Food Hydrocolloids, 2017, 63, 130-138.	5.6	120
10	Effects of sucrose on egg white protein and whey protein isolate foams: Factors determining properties of wet and dry foams (cakes). Food Hydrocolloids, 2010, 24, 227-238.	5.6	119
11	Sensory and mechanical aspects of cheese texture. International Dairy Journal, 2003, 13, 585-591.	1.5	112
12	Mineral salt effects on whey protein gelation. Journal of Agricultural and Food Chemistry, 1991, 39, 1013-1016.	2.4	106
13	Textural properties of agarose gels. I. Rheological and fracture properties. Food Hydrocolloids, 2006, 20, 184-195.	5. 6	104
14	Food Biophysics of Protein Gels: A Challenge of Nano and Macroscopic Proportions. Food Biophysics, 2006, 1, 41-50.	1.4	101
15	Rheological Properties and Characterization of Polymerized Whey Protein Isolates. Journal of Agricultural and Food Chemistry, 1999, 47, 3649-3655.	2.4	97
16	The effect of microstructure on the sensory perception and textural characteristics of whey protein/β-carrageenan mixed gels. Food Hydrocolloids, 2012, 26, 33-43.	5.6	92
17	Rheology and sensory texture of biopolymer gels. Current Opinion in Colloid and Interface Science, 2007, 12, 242-250.	3.4	90
18	Protein-polyphenol particles for delivering structural and health functionality. Food Hydrocolloids, 2017, 72, 163-173.	5.6	89

#	Article	IF	Citations
19	Designing Whey Protein–Polysaccharide Particles for Colloidal Stability. Annual Review of Food Science and Technology, 2016, 7, 93-116.	5.1	86
20	Specific divalent cation-induced changes during gelation of .betalactoglobulin. Journal of Agricultural and Food Chemistry, 1992, 40, 2092-2097.	2.4	81
21	Effects of Sugars on Whey Protein Isolate Gelation. Journal of Agricultural and Food Chemistry, 2000, 48, 5046-5052.	2.4	80
22	Formation of soluble whey protein aggregates and their stability in beverages. Food Hydrocolloids, 2015, 43, 265-274.	5.6	76
23	Denaturation and Aggregation of Three \hat{l} ±-Lactalbumin Preparations at Neutral pH. Journal of Agricultural and Food Chemistry, 2005, 53, 3182-3190.	2.4	75
24	EVALUATION OF TEXTURE CHANGES DUE TO COMPOSITIONAL DIFFERENCES USING ORAL PROCESSING. Journal of Texture Studies, 2012, 43, 257-267.	1.1	75
25	Interrelations among physical characteristics, sensory perception and oral processing of protein-based soft-solid structures. Food Hydrocolloids, 2012, 29, 234-245.	5.6	70
26	Food Protein Functionality—A New Model. Journal of Food Science, 2015, 80, C2670-7.	1.5	69
27	Functional Properties of Turkey Salt-Soluble Proteins. Journal of Food Science, 1987, 52, 1495-1499.	1.5	68
28	Designing foods for satiety: The roles of food structure and oral processing in satiation and satiety. Food Structure, 2017, 13, 1-12.	2.3	68
29	Enzyme-Induced Gelation of Extensively Hydrolyzed Whey Proteins by Alcalase:Â Comparison with the Plastein Reaction and Characterization of Interactions. Journal of Agricultural and Food Chemistry, 2003, 51, 6036-6042.	2.4	59
30	Factors Determining Fracture Stress and Strain of Fine-Stranded Whey Protein Gels. Journal of Agricultural and Food Chemistry, 1998, 46, 2963-2967.	2.4	57
31	Foams Prepared from Whey Protein Isolate and Egg White Protein: 2. Changes Associated with Angel Food Cake Functionality. Journal of Food Science, 2009, 74, E269-77.	1.5	55
32	Tenderization of beef with bacterial collagenase. Meat Science, 1986, 18, 201-214.	2.7	54
33	Starch-phenolic complexes are built on physical CH-Ï€ interactions and can persist after hydrothermal treatments altering hydrodynamic radius and digestibility of model starch-based foods. Food Chemistry, 2020, 308, 125577.	4.2	53
34	Myosin gelation kinetic study based on rheological measurements. Journal of Agricultural and Food Chemistry, 1991, 39, 229-236.	2.4	51
35	Dicationic-induced gelation of pre-denatured whey protein isolate. Food Hydrocolloids, 1996, 10, 193-198.	5.6	50
36	Fracture Analysis of Alginate Gels. Journal of Food Science, 2005, 70, e425-e431.	1.5	50

3

#	Article	IF	CITATIONS
37	Characterization of polyacrylamide gels as an elastic model for food gels. Rheologica Acta, 2005, 44, 622-630.	1.1	50
38	Using dairy ingredients to alter texture of foods: Implications based on oral processing considerations. International Dairy Journal, 2010, 20, 562-570.	1.5	48
39	Textural properties of agarose gels. II. Relationships between rheological properties and sensory texture. Food Hydrocolloids, 2006, 20, 196-203.	5.6	47
40	Interactions between \hat{l}^2 -lactoglobulin and dextran sulfate at near neutral pH and their effect on thermal stability. Food Hydrocolloids, 2009, 23, 1511-1520.	5.6	47
41	Caseins: Utilizing Molecular Chaperone Properties to Control Protein Aggregation in Foods. Journal of Agricultural and Food Chemistry, 2010, 58, 685-693.	2.4	47
42	The stability and physical properties of egg white and whey protein foams explained based on microstructure and interfacial properties. Food Hydrocolloids, 2011, 25, 1687-1701.	5.6	47
43	Moving from molecules, to structure, to texture perception. Food Hydrocolloids, 2017, 68, 31-42.	5.6	46
44	NMR Studies of Thermal Denaturation and Cation-Mediated Aggregation of .betaLactoglobulin. Journal of Agricultural and Food Chemistry, 1994, 42, 2411-2420.	2.4	45
45	ANALYSIS OF COMPRESSION, TENSION AND TORSION FOR TESTING FOOD GEL FRACTURE PROPERTIES. Journal of Texture Studies, 2006, 37, 620-639.	1.1	45
46	A proposed strain-hardening mechanism for alginate gels. Journal of Food Engineering, 2007, 80, 157-165.	2.7	45
47	Effects of Caseins on Thermal Stability of Bovine \hat{l}^2 -Lactoglobulin. Journal of Agricultural and Food Chemistry, 2008, 56, 10352-10358.	2.4	45
48	Transforming Structural Breakdown into Sensory Perception of Texture. Journal of Texture Studies, 2015, 46, 152-170.	1.1	44
49	Gelation of .betalactoglobulin treated with limited proteolysis by immobilized trypsin. Journal of Agricultural and Food Chemistry, 1994, 42, 234-239.	2.4	43
50	Protein-bound Vaccinium fruit polyphenols decrease IgE binding to peanut allergens and RBL-2H3 mast cell degranulation in vitro. Food and Function, 2017, 8, 1611-1621.	2.1	43
51	Polyacrylamide gels as elastic models for food gels. Food Hydrocolloids, 1994, 8, 125-134.	5.6	42
52	SENSORY TEXTURE RELATED TO LARGE-STRAIN RHEOLOGICAL PROPERTIES OF AGAR/GLYCEROL GELS AS A MODEL FOOD. Journal of Texture Studies, 2006, 37, 241-262.	1.1	41
53	Stability and immunogenicity of hypoallergenic peanut protein–polyphenol complexes during in vitro pepsin digestion. Food and Function, 2015, 6, 2145-2154.	2.1	41
54	RHEOLOGICAL PROPERTIES OF WHEY PROTEIN ISOLATE GELS DETERMINED BY TORSIONAL FRACTURE AND STRESS RELAXATION. Journal of Texture Studies, 1992, 23, 337-348.	1.1	40

#	Article	IF	CITATIONS
55	Effect of Sulfated Polysaccharides on Heat-Induced Structural Changes in \hat{l}^2 -Lactoglobulin. Journal of Agricultural and Food Chemistry, 2004, 52, 3975-3981.	2.4	40
56	Formation of whey protein–polyphenol meso-structures as a natural means of creating functional particles. Food and Function, 2016, 7, 1306-1318.	2.1	39
57	Emulsion filled polysaccharide gels: Filler particle effects on material properties, oral processing, and sensory texture. Food Hydrocolloids, 2019, 94, 311-325.	5.6	37
58	Influence of Poultry Species, Muscle Groups, and NaCl Level on Strength, Deformability, and Water Retention in Heat-Set Muscle Gels. Journal of Food Science, 1989, 54, 1136-1140.	1.5	36
59	Whey protein gels: fracture stress and strain and related microstructural properties. Food Hydrocolloids, 1994, 8, 113-123.	5.6	35
60	Comparison of the Gelation Properties of .betaLactoglobulin Genetic Variants A and B. Journal of Agricultural and Food Chemistry, 1994, 42, 1064-1067.	2.4	35
61	Effects of dextran sulfate, NaCl, and initial protein concentration on thermal stability of \hat{l}^2 -lactoglobulin and $\hat{l}\pm$ -lactalbumin at neutral pH. Food Hydrocolloids, 2008, 22, 752-762.	5.6	35
62	Rheological analysis of anion-induced matrix transformations in thermally induced whey protein isolate gels. Food Hydrocolloids, 1995, 9, 57-64.	5.6	34
63	Design of a Beverage from Whey Permeate. Journal of Food Science, 2005, 70, S277-S285.	1.5	34
64	Effect of Disulfide Interactions and Hydrolysis on the Thermal Aggregation of \hat{l}^2 -Lactoglobulin. Journal of Agricultural and Food Chemistry, 2011, 59, 1491-1497.	2.4	34
65	Foams Prepared from Whey Protein Isolate and Egg White Protein: 1. Physical, Microstructural, and Interfacial Properties. Journal of Food Science, 2009, 74, E259-68.	1.5	33
66	Understanding and Controlling Food Protein Structure and Function in Foods: Perspectives from Experiments and Computer Simulations. Annual Review of Food Science and Technology, 2020, 11, 365-387.	5.1	33
67	Factors Influencing Whey Protein Gel Rheology: Dialysis and Calcium Chelation. Journal of Food Science, 1991, 56, 789-791.	1.5	32
68	Denaturation and Aggregation of Chicken Myosin Isoforms. Journal of Agricultural and Food Chemistry, 1996, 44, 1435-1440.	2.4	29
69	DESCRIPTIVE ANALYSIS OF CARAMEL TEXTURE. Journal of Sensory Studies, 2003, 18, 277-289.	0.8	29
70	Solubility and aggregation of commercial \hat{l}_{\pm} -lactalbumin at neutral pH. International Dairy Journal, 2007, 17, 1168-1178.	1.5	29
71	Mechanical characterization of network formation during heat-induced gelation of whey protein dispersions. Biopolymers, 2000, 56, 109-119.	1.2	26
72	A comparison of the lubrication behavior of whey protein model foods using tribology in linear and elliptical movement. Journal of Texture Studies, 2017, 48, 335-341.	1.1	23

#	Article	IF	CITATIONS
73	Gelation and Thermal Transitions in Post-Rigor Turkey Myosin/Actomyosin Suspensions. Journal of Food Science, 1988, 53, 1278-1281.	1.5	22
74	Phospholipid/Fatty Acid-Induced Secondary Structural Change in \hat{l}^2 -Lactoglobulin during Heat-Induced Gelation. Journal of Agricultural and Food Chemistry, 2000, 48, 605-610.	2.4	22
75	Using State Diagrams for Predicting Colloidal Stability of Whey Protein Beverages. Journal of Agricultural and Food Chemistry, 2015, 63, 4335-4344.	2.4	22
76	Caramel as a Model System for Evaluating the Roles of Mechanical Properties and Oral Processing on Sensory Perception of Texture. Journal of Food Science, 2016, 81, S736-44.	1.5	22
77	ELECTROSTATIC EFFECTS ON PHYSICAL PROPERTIES OF PARTICULATE WHEY PROTEIN ISOLATE GELS. Journal of Texture Studies, 2001, 32, 285-305.	1.1	21
78	Gelation., 2009,, 29-91.		21
79	Polyphenol-enriched berry extracts naturally modulate reactive proteins in model foods. Food and Function, 2017, 8, 4760-4767.	2.1	21
80	Rheological properties of fine-stranded whey protein isolate gels. Food Hydrocolloids, 2003, 17, 515-522.	5.6	20
81	Comparison of jaw tracking by single video camera with 3D electromagnetic system. Journal of Food Engineering, 2016, 190, 22-33.	2.7	20
82	Formulation of protein–polyphenol particles for applications in food systems. Food and Function, 2020, 11, 5091-5104.	2.1	20
83	The effect of pH on gel structures produced using protein–polysaccharide phase separation and network inversion. International Dairy Journal, 2012, 27, 99-102.	1.5	18
84	Effects of Heating Rate and pH on Fracture and Waterâ€Holding Properties of Globular Protein Gels as Explained by Microâ€Phase Separation. Journal of Food Science, 2012, 77, E60-7.	1.5	18
85	Gel Formation of Peptides Produced by Extensive Enzymatic Hydrolysis of \hat{l}^2 -Lactoglobulin. Biomacromolecules, 2005, 6, 1140-1148.	2.6	17
86	Rheological characterization and electrokinetic phenomena of charged whey protein dispersions of defined sizes. LWT - Food Science and Technology, 2006, 39, 206-215.	2.5	17
87	Viscosity drives texture perception of protein beverages more than hydrocolloid type. Journal of Texture Studies, 2020, 51, 78-91.	1.1	17
88	Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety. Journal of Medicinal Food, 2016, 19, 219-227.	0.8	16
89	A comparison of drying operations on the rheological properties of whey protein thickening ingredients. International Journal of Food Science and Technology, 2004, 39, 1023-1031.	1.3	15
90	Reprint of â€~Protein-polyphenol particles for delivering structural and health functionality'. Food Hydrocolloids, 2018, 78, 15-25.	5.6	15

#	Article	IF	CITATIONS
91	Foaming and sensory characteristics of protein-polyphenol particles in a food matrix. Food Hydrocolloids, 2022, 123, 107148.	5 . 6	15
92	Isolation of Actomyosin and Myosin from Post-Rigor Turkey Breast and Thigh. Journal of Food Science, 1988, 53, 1287-1289.	1.5	14
93	Sweetness perception in protein-polysaccharide beverages is not explained by viscosity or critical overlap concentration. Food Hydrocolloids, 2019, 94, 229-237.	5. 6	13
94	Thermally Induced Gelation of Chicken Myosin Isoforms. Journal of Agricultural and Food Chemistry, 1996, 44, 1441-1446.	2.4	12
95	Strain hardening and anisotropy in tensile fracture properties of sheared model Mozzarella cheeses. Journal of Dairy Science, 2018, 101, 123-134.	1.4	12
96	Gelation of Myofibrillar Protein. ACS Symposium Series, 1991, , 257-267.	0.5	9
97	POLYACRYLAMIDE GELS AS ELASTIC MODELS FOR FOOD GELS: FRACTURE PROPERTIES AFFECTED BY DEXTRAN AND GLYCEROL. Journal of Texture Studies, 2006, 37, 200-220.	1.1	9
98	Whey protein-polyphenol aggregate particles mitigate bar hardening reactions in high protein bars. LWT - Food Science and Technology, 2021, 138, 110747.	2.5	9
99	Development of a Test to Predict Gelation Properties of Raw Turkey Muscle Proteins. Journal of Food Science, 1990, 55, 932-936.	1.5	8
100	Formation of Elastic Whey Protein Gels at Low pH by Acid Equilibration. Journal of Food Science, 2010, 75, E305-13.	1.5	6
101	Sensory and Functionality Differences of Whey Protein Isolate Bleached by Hydrogen or Benzoyl Peroxide. Journal of Food Science, 2015, 80, C2153-60.	1.5	6
102	Rheological Principles for Food Analysis. Food Science Text Series, 2010, , 541-554.	0.3	5
103	An ISOâ€Protein Model Food System for Evaluating Food Texture Effects. Journal of Texture Studies, 2016, 47, 377-391.	1.1	5
104	Heat stability of whey protein ingredients based on state diagrams. International Dairy Journal, 2019, 91, 25-35.	1.5	5
105	The Role of Texture and Fat on Flavor Release from Whey Protein Isolate Gels. ACS Symposium Series, 2000, , 355-367.	0.5	4
106	Casein as a Modifier of Whey Protein Isolate Gel: Sensory Texture and Rheological Properties. Journal of Food Science, 2019, 84, 3399-3410.	1.5	3
107	Morphological and masticatory performance variation of mouth behavior groups. Journal of Texture Studies, 2020, 51, 343-351.	1.1	2
108	Effect of genetic polymorphism on the gelation of βâ€lactoglobulin. Macromolecular Symposia, 1999, 140, 137-143.	0.4	1

ARTICLE IF CITATIONS

109 EFFECTS OF LIPID ON WHEY PROTEIN GELATION., 2000,, 366-372.