Byung Chul Yeo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10975136/publications.pdf

Version: 2024-02-01

	623734		940533	
17	689	14	16	
papers	citations	h-index	g-index	
17	17	17	1335	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Unraveling the Atomistic Sodiation Mechanism of Black Phosphorus for Sodium Ion Batteries by First-Principles Calculations. Journal of Physical Chemistry C, 2015, 119, 15041-15046.	3.1	135
2	Simultaneously Controllable Doping Sites and the Activity of a W–N Codoped TiO ₂ Photocatalyst. ACS Catalysis, 2016, 6, 2745-2753.	11.2	84
3	A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 21391-21397.	2.8	73
4	Atomistic Observation of the Lithiation and Delithiation Behaviors of Silicon Nanowires Using Reactive Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2015, 119, 3447-3455.	3.1	56
5	Simulation Protocol for Prediction of a Solid-Electrolyte Interphase on the Silicon-based Anodes of a Lithium-lon Battery: ReaxFF Reactive Force Field. Journal of Physical Chemistry Letters, 2017, 8, 2812-2818.	4.6	51
6	Atomistics of the lithiation of oxidized silicon (SiO _x) nanowires in reactive molecular dynamics simulations. Physical Chemistry Chemical Physics, 2016, 18, 32078-32086.	2.8	41
7	Pattern Learning Electronic Density of States. Scientific Reports, 2019, 9, 5879.	3.3	38
8	High-Throughput Screening to Investigate the Relationship between the Selectivity and Working Capacity of Porous Materials for Propylene/Propane Adsorptive Separation. Journal of Physical Chemistry C, 2016, 120, 24224-24230.	3.1	37
9	Atomistic Sodiation Mechanism of a Phosphorene/Graphene Heterostructure for Sodium-Ion Batteries Determined by First-Principles Calculations. Journal of Physical Chemistry C, 2018, 122, 20653-20660.	3.1	35
10	Unlocking the Potential of Nanoparticles Composed of Immiscible Elements for Direct H2O2 Synthesis. ACS Catalysis, 2019, 9, 8702-8711.	11.2	32
11	Development of the ReaxFF _{CBN} reactive force field for the improved design of liquid CBN hydrogen storage materials. Physical Chemistry Chemical Physics, 2016, 18, 1818-1827.	2.8	27
12	Dissimilar anisotropy of electron versus hole bulk transport in anatase <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2<td>nn3.2/mml</td><td> :m88b></td></mml:mn></mml:msub></mml:math>	nn 3. 2/mml	:m 88 b>
13	High-throughput computational-experimental screening protocol for the discovery of bimetallic catalysts. Npj Computational Materials, 2021, 7, .	8.7	20
14	Atomistic Simulation Protocol for Improved Design of Si–O–C Hybrid Nanostructures as Li-Ion Battery Anodes: ReaxFF Reactive Force Field. Journal of Physical Chemistry C, 2017, 121, 23268-23275.	3.1	14
15	Energy Efficient Scalable Video Coding Based Cooperative Multicast Scheme with Selective Layer Forwarding. IEEE Communications Letters, 2013, 17, 1116-1119.	4.1	12
16	Accelerated mapping of electronic density of states patterns of metallic nanoparticles via machine-learning. Scientific Reports, 2021, 11, 11604.	3.3	11
17	High-throughput Screening Computation for Discovery of Porous Zeolites for Hydrogen Storage. Journal of Korean Institute of Metals and Materials, 2022, 60, 537-544.	1.0	0