Michael Levin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1097299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endless forms most beautiful 2.0: teleonomy and the bioengineering of chimaeric and synthetic organisms. Biological Journal of the Linnean Society, 2023, 139, 457-486.	0.7	28
2	Potassium channel-driven bioelectric signalling regulates metastasis in triple-negative breast cancer. EBioMedicine, 2022, 75, 103767.	2.7	26
3	Multi-scale Chimerism: An experimental window on the algorithms of anatomical control. Cells and Development, 2022, 169, 203764.	0.7	8
4	Minimal Developmental Computation: A Causal Network Approach to Understand Morphogenetic Pattern Formation. Entropy, 2022, 24, 107.	1.1	13
5	Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult <i>Xenopus laevis</i> . Science Advances, 2022, 8, eabj2164.	4.7	27
6	Studying Protista WBR and Repair Using Physarum polycephalum. Methods in Molecular Biology, 2022, 2450, 51-67.	0.4	0
7	Impact of Membrane Voltage on Formation and Stability of Human Renal Proximal Tubules <i>in Vitro</i> . ACS Biomaterials Science and Engineering, 2022, 8, 1239-1246.	2.6	Ο
8	Design for an Individual: Connectionist Approaches to the Evolutionary Transitions in Individuality. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	13
9	A Computational Approach to Explaining Bioelectrically Induced Persistent, Stochastic Changes of Axial Polarity in Planarian Regeneration. Bioelectricity, 2022, 4, 18-30.	0.6	Ο
10	Technological Approach to Mind Everywhere: An Experimentally-Grounded Framework for Understanding Diverse Bodies and Minds. Frontiers in Systems Neuroscience, 2022, 16, 768201.	1.2	44
11	Bioelectricity: From Endogenous Mechanisms to Opportunities in Synthetic Bioengineering. Bioelectricity, 2022, 4, 1-2.	0.6	1
12	Ion Channel Drugs Suppress Cancer Phenotype in NG108-15 and U87 Cells: Toward Novel Electroceuticals for Glioblastoma. Cancers, 2022, 14, 1499.	1.7	12
13	Biological underpinnings for lifelong learning machines. Nature Machine Intelligence, 2022, 4, 196-210.	8.3	62
14	Metacognition as a Consequence of Competing Evolutionary Time Scales. Entropy, 2022, 24, 601.	1.1	11
15	Biology, Buddhism, and Al: Care as the Driver of Intelligence. Entropy, 2022, 24, 710.	1.1	4
16	A free energy principle for generic quantum systems. Progress in Biophysics and Molecular Biology, 2022, 173, 36-59.	1.4	29
17	Neurons as hierarchies of quantum reference frames. BioSystems, 2022, 219, 104714.	0.9	12
18	HCN2 channelâ€induced rescue of brain, eye, heart and gut teratogenesis caused by nicotine, ethanol and aberrant notch signalling. Wound Repair and Regeneration, 2022, 30, 681-706.	1.5	11

#	Article	IF	CITATIONS
19	Enhancers of Host Immune Tolerance to Bacterial Infection Discovered Using Linked Computational and Experimental Approaches. Advanced Science, 2022, 9, .	5.6	3
20	Competency in Navigating Arbitrary Spaces as an Invariant for Analyzing Cognition in Diverse Embodiments. Entropy, 2022, 24, 819.	1.1	37
21	Life, death, and self: Fundamental questions of primitive cognition viewed through the lens of body plasticity and synthetic organisms. Biochemical and Biophysical Research Communications, 2021, 564, 114-133.	1.0	42
22	A Meta-Analysis of Bioelectric Data in Cancer, Embryogenesis, and Regeneration. Bioelectricity, 2021, 3, 42-67.	0.6	25
23	Epigenetic control of myeloid cells behavior by Histone Deacetylase activity (HDAC) during tissue and organ regeneration in Xenopus laevis. Developmental and Comparative Immunology, 2021, 114, 103840.	1.0	3
24	Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization. Advanced Materials, 2021, 33, e2002882.	11.1	66
25	Reframing cognition: getting down to biological basics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190750.	1.8	85
26	Self-Organising Textures. Distill, 2021, 6, .	5.3	12
27	Bistability of somatic pattern memories: stochastic outcomes in bioelectric circuits underlying regeneration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190765.	1.8	24
28	Uncovering cognitive similarities and differences, conservation and innovation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200458.	1.8	29
29	Unlimited plasticity of embodied, cognitive subjects: a new playground for the UAL framework. Biology and Philosophy, 2021, 36, 1.	0.7	1
30	Living Things Are Not (20th Century) Machines: Updating Mechanism Metaphors in Light of the Modern Science of Machine Behavior. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	39
31	A cellular platform for the development of synthetic living machines. Science Robotics, 2021, 6, .	9.9	86
32	Gene regulatory networks exhibit several kinds of memory: Quantification of memory in biological and random transcriptional networks. IScience, 2021, 24, 102131.	1.9	31
33	Editorial. Bioelectricity, 2021, 3, 2-2.	0.6	0
34	Editorial: Interplay Between Ion Channels, the Nervous System, and Embryonic Development. Frontiers in Molecular Neuroscience, 2021, 14, 618815.	1.4	1
35	Learning and synaptic plasticity in 3D bioengineered neural tissues. Neuroscience Letters, 2021, 750, 135799.	1.0	2
36	Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer.	13.5	157

#	Article	IF	CITATIONS
37	Synthetic living machines: A new window on life. IScience, 2021, 24, 102505.	1.9	35
38	Bioelectrical approaches to cancer as a problem of the scaling of the cellular self. Progress in Biophysics and Molecular Biology, 2021, 165, 102-113.	1.4	35
39	Adversarial Reprogramming of Neural Cellular Automata. Distill, 2021, 6, .	5.3	2
40	Shapeâ€Changing Robots: Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization (Adv. Mater. 19/2021). Advanced Materials, 2021, 33, 2170150.	11.1	2
41	Minimal physicalism as a scale-free substrate for cognition and consciousness. Neuroscience of Consciousness, 2021, 2021, niab013.	1.4	24
42	Unmixing octopus camouflage by multispectral mapping of Octopus bimaculoides' chromatic elements. Nanophotonics, 2021, 10, 2441-2450.	2.9	4
43	Mechanosensation Mediates Longâ€Range Spatial Decisionâ€Making in an Aneural Organism. Advanced Materials, 2021, 33, e2008161.	11.1	11
44	Inducing Vertebrate Limb Regeneration: A Review of Past Advances and Future Outlook. Cold Spring Harbor Perspectives in Biology, 2021, , a040782.	2.3	4
45	A Comprehensive Conceptual and Computational Dynamics Framework for Autonomous Regeneration Systems. Artificial Life, 2021, 27, 80-104.	1.0	4
46	Bioelectricity Is the Bridge Where Cancer Meets Neuroscience. Bioelectricity, 2021, 3, 159-160.	0.6	0
47	Beyond Neurons: Long Distance Communication in Development and Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 739024.	1.8	16
48	Stability and robustness properties of bioelectric networks: A computational approach. Biophysics Reviews, 2021, 2, .	1.0	2
49	Metabolic limits on classical information processing by biological cells. BioSystems, 2021, 209, 104513.	0.9	13
50	Morphology changes induced by intercellular gap junction blocking: A reaction-diffusion mechanism. BioSystems, 2021, 209, 104511.	0.9	10
51	Cell Systems Bioelectricity: How Different Intercellular Gap Junctions Could Regionalize a Multicellular Aggregate. Cancers, 2021, 13, 5300.	1.7	13
52	Rewiring Endogenous Bioelectric Circuits in the Xenopus laevis Embryo Model. Methods in Molecular Biology, 2021, 2258, 93-103.	0.4	2
53	Kinematic self-replication in reconfigurable organisms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	57
54	Behaviorist approaches to investigating memory and learning: A primer for synthetic biology and bioengineering. Communicative and Integrative Biology, 2021, 14, 230-247.	0.6	16

#	Article	IF	CITATIONS
55	Defined extracellular ionic solutions to study and manipulate the cellular resting membrane potential. Biology Open, 2020, 9, .	0.6	12
56	Morphogenesis as Bayesian inference: A variational approach to pattern formation and control in complex biological systems. Physics of Life Reviews, 2020, 33, 88-108.	1.5	73
57	Toward Decoding Bioelectric Events in Xenopus Embryogenesis: New Methodology for Tracking Interplay Between Calcium and Resting Potentials In Vivo. Journal of Molecular Biology, 2020, 432, 605-620.	2.0	14
58	A scalable pipeline for designing reconfigurable organisms. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1853-1859.	3.3	255
59	Assessment of Enrichment of Human Mesenchymal Stem Cells Based on Plasma and Mitochondrial Membrane Potentials. Bioelectricity, 2020, 2, 21-32.	0.6	4
60	Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions. Bioelectrochemistry, 2020, 132, 107410.	2.4	15
61	Post-SSRI Sexual Dysfunction: A Bioelectric Mechanism?. Bioelectricity, 2020, 2, 7-13.	0.6	3
62	Morphological Coordination: A Common Ancestral Function Unifying Neural and Non-Neural Signaling. Physiology, 2020, 35, 16-30.	1.6	58
63	Nervous system and tissue polarity dynamically adapt to new morphologies in planaria. Developmental Biology, 2020, 467, 51-65.	0.9	9
64	Integrating variational approaches to pattern formation into a deeper physics. Physics of Life Reviews, 2020, 33, 125-128.	1.5	3
65	Precise control of ion channel and gap junction expression is required for patterning of the regenerating axolotl limb. International Journal of Developmental Biology, 2020, 64, 485-494.	0.3	7
66	How Do Living Systems Create Meaning?. Philosophies, 2020, 5, 36.	0.4	20
67	Emergence of informative higher scales in biological systems: a computational toolkit for optimal prediction and control. Communicative and Integrative Biology, 2020, 13, 108-118.	0.6	15
68	Applications and ethics of computer-designed organisms. Nature Reviews Molecular Cell Biology, 2020, 21, 655-656.	16.1	16
69	Why isn't sex optional? Stem-cell competition, loss of regenerative capacity, and cancer in metazoan evolution. Communicative and Integrative Biology, 2020, 13, 170-183.	0.6	8
70	Inaugural Issue. Bioelectricity, 2020, 2, 1-1.	0.6	0
71	Machine Learningâ€Driven Bioelectronics for Closedâ€Loop Control of Cells. Advanced Intelligent Systems, 2020, 2, 2000140.	3.3	29
72	A 3D Tissue Model of Traumatic Brain Injury with Excitotoxicity That Is Inhibited by Chronic Exposure to Gabapentinoids. Biomolecules, 2020, 10, 1196.	1.8	7

#	Article	IF	CITATIONS
73	Cover Image: Volume 22, Issue 4. Evolution & Development, 2020, 22, i.	1.1	0
74	Bioelectronic control of chloride ions and concentration with Ag/AgCl contacts. APL Materials, 2020, 8, .	2.2	18
75	Bioelectricity: A Quick Reminder of a Fast-Advancing Discipline!. Bioelectricity, 2020, 2, 208-209.	0.6	2
76	Scaleâ€Free Biology: Integrating Evolutionary and Developmental Thinking. BioEssays, 2020, 42, e1900228.	1.2	31
77	Richard Borgens, 1946–2019. Bioelectricity, 2020, 2, 205-205.	0.6	0
78	On the coupling of mechanics with bioelectricity and its role in morphogenesis. Journal of the Royal Society Interface, 2020, 17, 20200177.	1.5	14
79	Revisiting Burr and Northrop's "The Electro-Dynamic Theory of Life―(1935). Biological Theory, 2020, 15, 83-90.	0.8	7
80	Interferon-Gamma Stimulated Murine Macrophages In Vitro: Impact of Ionic Composition and Osmolarity and Therapeutic Implications. Bioelectricity, 2020, 2, 48-58.	0.6	6
81	Sertraline induces DNA damage and cellular toxicity in Drosophila that can be ameliorated by antioxidants. Scientific Reports, 2020, 10, 4512.	1.6	7
82	von Willebrand factor D and EGF domains is an evolutionarily conserved and required feature of blastemas capable of multitissue appendage regeneration. Evolution & Development, 2020, 22, 297-311.	1.1	25
83	Competitive and Coordinative Interactions between Body Parts Produce Adaptive Developmental Outcomes. BioEssays, 2020, 42, e1900245.	1.2	20
84	Scalable sim-to-real transfer of soft robot designs. , 2020, , .		40
85	Does regeneration recapitulate phylogeny? Planaria as a model of body-axis specification in ancestral eumetazoa. Communicative and Integrative Biology, 2020, 13, 27-38.	0.6	7
86	The Biophysics of Regenerative Repair Suggests New Perspectives on Biological Causation. BioEssays, 2020, 42, e1900146.	1.2	27
87	Extra-genomic instructive influences in morphogenesis: A review of external signals that regulate growth and form. Developmental Biology, 2020, 461, 1-12.	0.9	11
88	Optogenetically induced cellular habituation in non-neuronal cells. PLoS ONE, 2020, 15, e0227230.	1.1	6
89	Formin, an opinion. Development (Cambridge), 2020, 147, .	1.2	5
90	An in vivo brain–bacteria interface: the developing brain as a key regulator of innate immunity. Npj Regenerative Medicine, 2020, 5, 2.	2.5	7

#	Article	IF	CITATIONS
91	Bioelectrical Coupling of Single-Cell States in Multicellular Systems. Journal of Physical Chemistry Letters, 2020, 11, 3234-3241.	2.1	28
92	Regulation of axial and head patterning during planarian regeneration by a commensal bacterium. Mechanisms of Development, 2020, 163, 103614.	1.7	20
93	Community effects allow bioelectrical reprogramming of cell membrane potentials in multicellular aggregates: Model simulations. Physical Review E, 2020, 102, 052412.	0.8	10
94	Growing Neural Cellular Automata. Distill, 2020, 5, .	5.3	56
95	HCN2 Channel-Induced Rescue of Brain Teratogenesis via Local and Long-Range Bioelectric Repair. Frontiers in Cellular Neuroscience, 2020, 14, 136.	1.8	32
96	Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration. ELife, 2020, 9, .	2.8	23
97	Self-classifying MNIST Digits. Distill, 2020, 5, .	5.3	13
98	Machine Learningâ€Driven Bioelectronics for Closed‣oop Control of Cells. Advanced Intelligent Systems, 2020, 2, 2070122.	3.3	3
99	Optogenetically induced cellular habituation in non-neuronal cells. , 2020, 15, e0227230.		0
100	Optogenetically induced cellular habituation in non-neuronal cells. , 2020, 15, e0227230.		0
101	Optogenetically induced cellular habituation in non-neuronal cells. , 2020, 15, e0227230.		0
102	Optogenetically induced cellular habituation in non-neuronal cells. , 2020, 15, e0227230.		0
103	Reverse-engineering growth and form in Heidelberg. Development (Cambridge), 2019, 146, .	1.2	5
104	From non-excitable single-cell to multicellular bioelectrical states supported by ion channels and gap junction proteins: Electrical potentials as distributed controllers. Progress in Biophysics and Molecular Biology, 2019, 149, 39-53.	1.4	30
105	L-type voltage-gated Ca ²⁺ channel Ca _V 1.2 regulates chondrogenesis during limb development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21592-21601.	3.3	41
106	Managing Ideas, People, and Projects: Organizational Tools and Strategies for Researchers. IScience, 2019, 20, 278-291.	1.9	2
107	Hyperosmolar Potassium Inhibits Myofibroblast Conversion and Reduces Scar Tissue Formation. ACS Biomaterials Science and Engineering, 2019, 5, 5327-5336.	2.6	8
108	Editor's Picks for the Cancer Special Issue. Bioelectricity, 2019, 1, 201-202.	0.6	0

#	Article	IF	CITATIONS
109	A flow through device for simultaneous dielectrophoretic cell trapping and AC electroporation. Scientific Reports, 2019, 9, 11988.	1.6	46
110	Bioelectrical controls of morphogenesis: from ancient mechanisms of cell coordination to biomedical opportunities. Current Opinion in Genetics and Development, 2019, 57, 61-69.	1.5	38
111	Somatic multicellularity as a satisficing solution to the prediction-error minimization problem. Communicative and Integrative Biology, 2019, 12, 119-132.	0.6	12
112	Bioelectric Control of Metastasis in Solid Tumors. Bioelectricity, 2019, 1, 114-130.	0.6	47
113	EDEn–Electroceutical Design Environment: Ion Channel Tissue Expression Database with Small Molecule Modulators. IScience, 2019, 11, 42-56.	1.9	24
114	On the Generalization of Habituation: How Discrete Biological Systems Respond to Repetitive Stimuli. BioEssays, 2019, 41, e1900028.	1.2	7
115	Live imaging of intracellular pH in planarians using the ratiometric fluorescent dye SNARF-5F-AM. Biology Methods and Protocols, 2019, 4, bpz005.	1.0	1
116	Synchronization of Bioelectric Oscillations in Networks of Nonexcitable Cells: From Single-Cell to Multicellular States. Journal of Physical Chemistry B, 2019, 123, 3924-3934.	1.2	25
117	The Cognitive Lens: a primer on conceptual tools for analysing information processing in developmental and regenerative morphogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180369.	1.8	44
118	Neural control of body-plan axis in regenerating planaria. PLoS Computational Biology, 2019, 15, e1006904.	1.5	36
119	Membrane Potential Depolarization Alters Calcium Flux and Phosphate Signaling During Osteogenic Differentiation of Human Mesenchymal Stem Cells. Bioelectricity, 2019, 1, 56-66.	0.6	32
120	A call for a better understanding of causation in cell biology. Nature Reviews Molecular Cell Biology, 2019, 20, 261-262.	16.1	41
121	The Role of Early Bioelectric Signals in the Regeneration of Planarian Anterior/Posterior Polarity. Biophysical Journal, 2019, 116, 948-961.	0.2	70
122	The Computational Boundary of a "Self― Developmental Bioelectricity Drives Multicellularity and Scale-Free Cognition. Frontiers in Psychology, 2019, 10, 2688.	1.1	114
123	Regenerative Adaptation to Electrochemical Perturbation in Planaria: A Molecular Analysis of Physiological Plasticity. IScience, 2019, 22, 147-165.	1.9	19
124	Endogenous Bioelectrics in Development, Cancer, and Regeneration: Drugs and Bioelectronic Devices as Electroceuticals for Regenerative Medicine. IScience, 2019, 22, 519-533.	1.9	40
125	Modeling somatic computation with non-neural bioelectric networks. Scientific Reports, 2019, 9, 18612.	1.6	28
126	Selective Serotonin Reuptake Inhibitor Use During Pregnancy and Major Malformations: The Importance of Serotonin for Embryonic Development and the Effect of Serotonin Inhibition on the Occurrence of Malformations. Bioelectricity, 2019, 1, 18-29.	0.6	8

#	Article	IF	CITATIONS
127	The Bioelectricity Revolution: A Discussion Among the Founding Associate Editors. Bioelectricity, 2019, 1, 8-15.	0.6	1
128	Effects of Ivermectin Exposure on Regeneration of <i>D. dorotocephala</i> Planaria: Exploiting Humanâ€Approved Ion Channel Drugs as Morphoceuticals. Macromolecular Bioscience, 2019, 19, e1800237.	2.1	6
129	Planarian regeneration as a model of anatomical homeostasis: Recent progress in biophysical and computational approaches. Seminars in Cell and Developmental Biology, 2019, 87, 125-144.	2.3	47
130	Toward Modeling Regeneration via Adaptable Echo State Networks. , 2019, , 117-134.		0
131	HCN2 Rescues brain defects by enforcing endogenous voltage pre-patterns. Nature Communications, 2018, 9, 998.	5.8	63
132	The body electric 2.0: recent advances in developmental bioelectricity for regenerative and synthetic bioengineering. Current Opinion in Biotechnology, 2018, 52, 134-144.	3.3	81
133	Niclosamide rescues microcephaly in a humanized <i>in vivo</i> model of Zika infection using human induced neural stem cells. Biology Open, 2018, 7, .	0.6	30
134	Bioelectrical control of positional information in development and regeneration: A review of conceptual and computational advances. Progress in Biophysics and Molecular Biology, 2018, 137, 52-68.	1.4	35
135	Inverse Drug Screening of Bioelectric Signaling and Neurotransmitter Roles: Illustrated Using a <i>Xenopus</i> Tail Regeneration Assay. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot099937.	0.2	9
136	Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form. Developmental Biology, 2018, 433, 177-189.	0.9	163
137	Slime mould: The fundamental mechanisms of biological cognition. BioSystems, 2018, 165, 57-70.	0.9	67
138	Bioelectrical coupling in multicellular domains regulated by gap junctions: A conceptual approach. Bioelectrochemistry, 2018, 123, 45-61.	2.4	59
139	Booting up the organism during development: Pre-behavioral functions of the vertebrate brain in guiding body morphogenesis. Communicative and Integrative Biology, 2018, 11, e1433440.	0.6	14
140	Are Planaria Individuals? What Regenerative Biology is Telling Us About the Nature of Multicellularity. Evolutionary Biology, 2018, 45, 237-247.	0.5	38
141	The bioelectric code: An ancient computational medium for dynamic control of growth and form. BioSystems, 2018, 164, 76-93.	0.9	139
142	Embodying Markov blankets. Physics of Life Reviews, 2018, 24, 32-36.	1.5	6
143	Multiscale memory and bioelectric error correction in the cytoplasm–cytoskeletonâ€membrane system. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1410. 	6.6	32
144	Cover Image, Volume 10, Issue 2. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1420.	6.6	0

#	Article	IF	CITATIONS
145	Avian models and the study of invariant asymmetry: how the chicken and the egg taught us to tell right from left. International Journal of Developmental Biology, 2018, 62, 63-77.	0.3	17
146	Brief Local Application of Progesterone via a Wearable Bioreactor Induces Long-Term Regenerative Response in Adult Xenopus Hindlimb. Cell Reports, 2018, 25, 1593-1609.e7.	2.9	33
147	A Computational Framework for Autonomous Self-repair Systems. Lecture Notes in Computer Science, 2018, , 153-159.	1.0	5
148	The Bacterial Metabolite Indole Inhibits Regeneration of the Planarian Flatworm Dugesia japonica. IScience, 2018, 10, 135-148.	1.9	17
149	Ivermectin Promotes Peripheral Nerve Regeneration during Wound Healing. ACS Omega, 2018, 3, 12392-12402.	1.6	11
150	Perspective: The promise of multi-cellular engineered living systems. APL Bioengineering, 2018, 2, 040901.	3.3	110
151	Activating PAX gene family paralogs to complement PAX5 leukemia driver mutations. PLoS Genetics, 2018, 14, e1007642.	1.5	3
152	Inform: Efficient Information-Theoretic Analysis of Collective Behaviors. Frontiers in Robotics and AI, 2018, 5, 60.	2.0	33
153	Pattern Regeneration in Coupled Networks. , 2018, , .		1
154	Modeling Cell Migration in a Simulated Bioelectrical Signaling Network for Anatomical Regeneration. , 2018, , .		4
155	From Physics to Pattern: Uncovering Pattern Formation in Tissue Electrophysiology. , 2018, , .		6
156	Cross-limb communication during <i>Xenopus</i> hind-limb regenerative response: non-local bioelectric injury signals. Development (Cambridge), 2018, 145, .	1.2	30
157	A computational model of planarian regeneration. International Journal of Parallel, Emergent and Distributed Systems, 2017, 32, 331-347.	0.7	11
158	Gap junctional signaling in pattern regulation: Physiological network connectivity instructs growth and form. Developmental Neurobiology, 2017, 77, 643-673.	1.5	67
159	Reversals of Bodies, Brains, and Behavior. Neuromethods, 2017, , 667-694.	0.2	1
160	Discovering novel phenotypes with automatically inferred dynamic models: a partial melanocyte conversion in Xenopus. Scientific Reports, 2017, 7, 41339.	1.6	26
161	Repeated removal of developing limb buds permanently reduces appendage size in the highly-regenerative axolotl. Developmental Biology, 2017, 424, 1-9.	0.9	31
162	Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form. Annual Review of Biomedical Engineering, 2017, 19, 353-387.	5.7	182

#	Article	IF	CITATIONS
163	Planarian regeneration in space: Persistent anatomical, behavioral, and bacteriological changes induced by space travel. Regeneration (Oxford, England), 2017, 4, 85-102.	6.3	23
164	Long-Term, Stochastic Editing of Regenerative Anatomy via Targeting Endogenous Bioelectric Gradients. Biophysical Journal, 2017, 112, 2231-2243.	0.2	101
165	Bioelectric regulation of innate immune system function in regenerating and intact Xenopus laevis. Npj Regenerative Medicine, 2017, 2, 15.	2.5	19
166	Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in <i>Xenopus laevis</i> . Communicative and Integrative Biology, 2017, 10, e1309488.	0.6	29
167	Serotonergic stimulation induces nerve growth and promotes visual learning via posterior eye grafts in a vertebrate model of induced sensory plasticity. Npj Regenerative Medicine, 2017, 2, 8.	2.5	28
168	Modeling regenerative processes with membrane computing. Information Sciences, 2017, 381, 229-249.	4.0	35
169	Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation. Journal of the Royal Society Interface, 2017, 14, 20170425.	1.5	71
170	HCN4 ion channel function is required for early events that regulate anatomical left-right patterning in a Nodal- and Lefty asymmetric gene expression-independent manner. Biology Open, 2017, 6, 1445-1457.	0.6	22
171	Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. Convergent Science Physical Oncology, 2017, 3, 043001.	2.6	35
172	The brain is required for normal muscle and nerve patterning during early Xenopus development. Nature Communications, 2017, 8, 587.	5.8	40
173	The Zahn drawings: new illustrations of <i>Xenopus</i> embryo and tadpole stages for studies of craniofacial development. Development (Cambridge), 2017, 144, 2708-2713.	1.2	15
174	Computing a Worm: Reverse-Engineering Planarian Regeneration. Emergence, Complexity and Computation, 2017, , 637-654.	0.2	9
175	Space travel has effects on planarian regeneration that cannot be explained by a null hypothesis. Regeneration (Oxford, England), 2017, 4, 156-158.	6.3	2
176	Introducing simulated stem cells into a bio-inspired cell-cell communication mechanism for structure regeneration. , 2017, , .		4
177	Inform: A toolkit for information-theoretic analysis of complex systems. , 2017, , .		6
178	Ion Channel and Neurotransmitter Modulators as Electroceutical Approaches to the Control of Cancer. Current Pharmaceutical Design, 2017, 23, 4827-4841.	0.9	32
179	Bioelectrical coordination of cell activity toward anatomical target states. , 2017, , 55-112.		2
180	IK channel activation increases tumor growth and induces differential behavioral responses in two breast epithelial cell lines. Oncotarget, 2017, 8, 42382-42397.	0.8	9

#	Article	IF	CITATIONS
181	Microfluidic platform to study intercellular connectivity through on-chip electrical impedance measurement. , 2017, , .		2
182	Investigating the effects of noise on a cell-to-cell communication mechanism for structure regeneration. , 2017, , .		1
183	Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine. Frontiers in Bioengineering and Biotechnology, 2016, 4, 55.	2.0	68
184	On Having No Head: Cognition throughout Biological Systems. Frontiers in Psychology, 2016, 7, 902.	1.1	209
185	Bioelectric modulation of macrophage polarization. Scientific Reports, 2016, 6, 21044.	1.6	72
186	Comparison of the depolarization response of human mesenchymal stem cells from different donors. Scientific Reports, 2016, 5, 18279.	1.6	27
187	Introduction to provocative questions in left–right asymmetry. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150399.	1.8	21
188	Telocytes in their context with other intercellular communication agents. Seminars in Cell and Developmental Biology, 2016, 55, 9-13.	2.3	26
189	Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2â€associated Andersen–Tawil Syndrome. Journal of Physiology, 2016, 594, 3245-3270.	1.3	110
190	Color and intensity discrimination in Xenopus laevis tadpoles. Animal Cognition, 2016, 19, 911-919.	0.9	13
191	Formin Is Associated with Left-Right Asymmetry in the Pond Snail and the Frog. Current Biology, 2016, 26, 654-660.	1.8	135
192	Computational discovery and <i>in vivo</i> validation of <i>hnf4</i> as a regulatory gene in planarian regeneration. Bioinformatics, 2016, 32, 2681-2685.	1.8	17
193	Vertically- and horizontally-transmitted memories – the fading boundaries between regeneration and inheritance in planaria. Biology Open, 2016, 5, 1177-1188.	0.6	27
194	Physiological controls of largeâ€scale patterning in planarian regeneration: a molecular and computational perspective on growth and form. Regeneration (Oxford, England), 2016, 3, 78-102.	6.3	44
195	Genomeâ€wide analysis reveals conserved transcriptional responses downstream of resting potential change in <i>Xenopus</i> embryos, axolotl regeneration, and human mesenchymal cell differentiation. Regeneration (Oxford, England), 2016, 3, 3-25.	6.3	53
196	Physiological inputs regulate species-specific anatomy during embryogenesis and regeneration. Communicative and Integrative Biology, 2016, 9, e1192733.	0.6	55
197	Towards a Physarum learning chip. Scientific Reports, 2016, 6, 19948.	1.6	20
198	From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left–right patterning. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150409.	1.8	27

#	Article	IF	CITATIONS
199	Top-down models in biology: explanation and control of complex living systems above the molecular level. Journal of the Royal Society Interface, 2016, 13, 20160555.	1.5	131
200	Neurotransmitter signaling pathways required for normal development in <i>Xenopus laevis</i> embryos: a pharmacological survey screen. Journal of Anatomy, 2016, 229, 483-502.	0.9	26
201	Artificial Neural Networks as Models of Robustness in Development and Regeneration: Stability of Memory During Morphological Remodeling. Studies in Computational Intelligence, 2016, , 45-65.	0.7	3
202	Conserved roles for cytoskeletal components in determining laterality. Integrative Biology (United) Tj ETQq0 0 0	rgBT/Ove 0.6	rlock 10 Tf 5 16
203	MoCha: Molecular Characterization of Unknown Pathways. Journal of Computational Biology, 2016, 23, 291-297.	0.8	8
204	On chirality of slime mould. BioSystems, 2016, 140, 23-27.	0.9	11
205	A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis. PLoS ONE, 2016, 11, e0155618.	1.1	12
206	Use of genetically encoded, light-gated ion translocators to control tumorigenesis. Oncotarget, 2016, 7, 19575-19588.	0.8	74
207	Dynamic Structure Discovery and Repair for 3D Cell Assemblages. , 2016, , .		4
208	A Level Set Approach to Simulating Xenopus laevis Tail Regeneration. , 2016, , .		0
209	Membrane potential depolarization causes alterations in neuron arrangement and connectivity in cocultures. Brain and Behavior, 2015, 5, 24-38.	1.0	15
210	Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells. Theoretical Biology and Medical Modelling, 2015, 12, 22.	2.1	42
211	Automatic neuron segmentation and neural network analysis method for phase contrast microscopy images. Biomedical Optics Express, 2015, 6, 4395.	1.5	9
212	Biofield physiology: A Framework for an emerging discipline. Global Advances in Health and Medicine, 2015, 4, gahmj.2015.015	0.7	29
213	Local and long-range endogenous resting potential gradients antagonistically regulate apoptosis and proliferation in the embryonic CNS. International Journal of Developmental Biology, 2015, 59, 327-340.	0.3	49
214	Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms. International Journal of Molecular Sciences, 2015, 16, 27865-27896.	1.8	84
215	Inferring Regulatory Networks from Experimental Morphological Phenotypes: A Computational Method Reverse-Engineers Planarian Regeneration. PLoS Computational Biology, 2015, 11, e1004295.	1.5	67
216	On a Model of Pattern Regeneration Based on Cell Memory. PLoS ONE, 2015, 10, e0118091.	1.1	18

#	Article	IF	CITATIONS
217	Selective depolarization of transmembrane potential alters muscle patterning and muscle cell localization in Xenopus laevis embryos. International Journal of Developmental Biology, 2015, 59, 303-311.	0.3	21
218	A Novel Method for Inducing Nerve Growth via Modulation of Host Resting Potential: Gap Junction-Mediated and Serotonergic Signaling Mechanisms. Neurotherapeutics, 2015, 12, 170-184.	2.1	46
219	Endogenous Gradients of Resting Potential Instructively Pattern Embryonic Neural Tissue via Notch Signaling and Regulation of Proliferation. Journal of Neuroscience, 2015, 35, 4366-4385.	1.7	103
220	Knowing one's place: a free-energy approach to pattern regulation. Journal of the Royal Society Interface, 2015, 12, 20141383.	1.5	153
221	A Conceptual Model of Morphogenesis and Regeneration. Acta Biotheoretica, 2015, 63, 283-294.	0.7	23
222	Serotonergic regulation of melanocyte conversion: A bioelectrically regulated network for stochastic all-or-none hyperpigmentation. Science Signaling, 2015, 8, ra99.	1.6	49
223	H+/K+ ATPase activity is required for biomineralization in sea urchin embryos. Developmental Biology, 2015, 406, 259-270.	0.9	24
224	The stability of memories during brain remodeling: A perspective. Communicative and Integrative Biology, 2015, 8, e1073424.	0.6	36
225	Re-membering the body: applications of computational neuroscience to the top-down control of regeneration of limbs and other complex organs. Integrative Biology (United Kingdom), 2015, 7, 1487-1517.	0.6	117
226	Target morphology and cell memory: a model of regenerative pattern formation. Neural Regeneration Research, 2015, 10, 1901.	1.6	12
227	Optogenetics in Developmental Biology: using light to control ion flux-dependent signals in Xenopus embryos. International Journal of Developmental Biology, 2014, 58, 851-861.	0.3	46
228	Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions. International Journal of Developmental Biology, 2014, 58, 799-809.	0.3	17
229	A bioinformatics expert system linking functional data to anatomical outcomes in limb regeneration. Regeneration (Oxford, England), 2014, 1, 37-56.	6.3	12
230	Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Molecular Biology of the Cell, 2014, 25, 3835-3850.	0.9	269
231	Limbform: a functional ontology-based database of limb regeneration experiments. Bioinformatics, 2014, 30, 3598-3600.	1.8	15
232	Alteration of bioelectrically-controlled processes in the embryo: a teratogenic mechanism for anticonvulsants. Reproductive Toxicology, 2014, 47, 111-114.	1.3	33
233	Fishing on chips: Upâ€andâ€coming technological advances in analysis of zebrafish and <scp><i>X</i></scp> <i>enopus</i> embryos. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 921-932.	1.1	36
234	Depolarization of Cellular Resting Membrane Potential Promotes Neonatal Cardiomyocyte Proliferation In Vitro. Cellular and Molecular Bioengineering, 2014, 7, 432-445.	1.0	23

#	Article	IF	CITATIONS
235	Design of a flexible component gathering algorithm for converting cell-based models to graph representations for use in evolutionary search. BMC Bioinformatics, 2014, 15, 178.	1.2	4
236	Endogenous bioelectrical networks store nonâ€genetic patterning information during development and regeneration. Journal of Physiology, 2014, 592, 2295-2305.	1.3	158
237	Bioelectrical Mechanisms for Programming Growth and Form: Taming Physiological Networks for Soft Body Robotics. Soft Robotics, 2014, 1, 169-191.	4.6	44
238	A linear-encoding model explains the variability of the target morphology in regeneration. Journal of the Royal Society Interface, 2014, 11, 20130918.	1.5	69
239	Optogenetic Control of Apoptosis in Targeted Tissues of Xenopus laevis Embryos. Journal of Cell Death, 2014, 7, JCD.S18368.	0.8	23
240	Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos. Frontiers in Physiology, 2014, 5, 519.	1.3	63
241	Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget, 2014, 5, 3287-3306.	0.8	95
242	Endogenous Voltage Potentials and the Microenvironment: Bioelectric Signals that Reveal, Induce and Normalize Cancer. Journal of Clinical & Experimental Oncology, 2014, s1, .	0.1	73
243	Serotonin has early, cilia-independent roles in <i>Xenopus</i> left-right patterning. DMM Disease Models and Mechanisms, 2013, 6, 261-8.	1.2	33
244	Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell and Tissue Research, 2013, 352, 95-122.	1.5	151
245	An automated training paradigm reveals long-term memory in planaria and its persistence through head regeneration. Journal of Experimental Biology, 2013, 216, 3799-810.	0.8	80
246	Depolarization alters phenotype, maintains plasticity of pre-differentiated mesenchymal stem cells. Tissue Engineering - Part A, 2013, , 130424210024009.	1.6	0
247	Inversion of left–right asymmetry alters performance of Xenopus tadpoles in nonlateralized cognitive tasks. Animal Behaviour, 2013, 86, 459-466.	0.8	18
248	Reprogramming cells and tissue patterning via bioelectrical pathways: molecular mechanisms and biomedical opportunities. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 657-676.	6.6	97
249	Bioelectric modulation of wound healing in a 3D inÂvitro model of tissue-engineered bone. Biomaterials, 2013, 34, 6695-6705.	5.7	68
250	Rab GTPases are required for early orientation of the left–right axis in Xenopus. Mechanisms of Development, 2013, 130, 254-271.	1.7	11
251	Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a <i>Xenopus</i> model. DMM Disease Models and Mechanisms, 2013, 6, 595-607.	1.2	121
252	Cracking the bioelectric code: Probing endogenous ionic controls of pattern formation. Communicative and Integrative Biology, 2013, 6, e22595.	0.6	124

#	Article	IF	CITATIONS
253	Bioelectric signaling regulates head and organ size during planarian regeneration. Development (Cambridge), 2013, 140, 313-322.	1.2	128
254	Light-activation of the Archaerhodopsin H+-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls <i>in vivo</i> . Biology Open, 2013, 2, 306-313.	0.6	77
255	Humane Anesthesia and Pain Management in Amphibian Limb Surgery of Rana pipiens. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot071977-pdb.prot071977.	0.2	3
256	Light-Activated Serotonin for Exploring Its Action in Biological Systems. Chemistry and Biology, 2013, 20, 1536-1546.	6.2	34
257	Towards a bioinformatics of patterning: a computational approach to understanding regulative morphogenesis. Biology Open, 2013, 2, 156-169.	0.6	28
258	Ectopic eyes outside the head in <i>Xenopus</i> tadpoles provide sensory data for light-mediated learning. Journal of Experimental Biology, 2013, 216, 1031-1040.	0.8	49
259	A unified model for left–right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. Developmental Biology, 2013, 379, 1-15.	0.9	141
260	lt's never too early to get it Right. Communicative and Integrative Biology, 2013, 6, e27155.	0.6	30
261	Bioelectrical signaling has rich history. Physics Today, 2013, 66, 11-11.	0.3	1
262	Stem Cells and Ion Channels. Stem Cells International, 2013, 2013, 1-3.	1.2	9
263	Planform: an application and database of graph-encoded planarian regenerative experiments. Bioinformatics, 2013, 29, 1098-1100.	1.8	25
264	Depolarization Alters Phenotype, Maintains Plasticity of Predifferentiated Mesenchymal Stem Cells. Tissue Engineering - Part A, 2013, 19, 1889-1908.	1.6	69
265	Aversive Training Methods in <i>Xenopus laevis</i> : General Principles. Cold Spring Harbor Protocols, 2012, 2012, pdb.top068338.	0.2	20
266	Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development (Cambridge), 2012, 139, 623-623.	1.2	3
267	Early, nonciliary role for microtubule proteins in left–right patterning is conserved across kingdoms. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12586-12591.	3.3	64
268	Neurally Derived Tissues in <i>Xenopus laevis</i> Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry. Stem Cells International, 2012, 2012, 1-16.	1.2	24
269	Modeling Planarian Regeneration: A Primer for Reverse-Engineering the Worm. PLoS Computational Biology, 2012, 8, e1002481.	1.5	78
270	Morphogenetic fields in embryogenesis, regeneration, and cancer: Non-local control of complex patterning. BioSystems, 2012, 109, 243-261.	0.9	178

#	Article	IF	CITATIONS
271	A Versatile Protocol for mRNA Electroporation of <i>Xenopus laevis</i> Embryos. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067694.	0.2	7
272	Transducing Bioelectric Signals into Epigenetic Pathways During Tadpole Tail Regeneration. Anatomical Record, 2012, 295, 1541-1551.	0.8	56
273	Regulation of Cell Behavior and Tissue Patterning by Bioelectrical Signals: Challenges and Opportunities for Biomedical Engineering. Annual Review of Biomedical Engineering, 2012, 14, 295-323.	5.7	185
274	Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer <i>in vivo</i> . Physical Biology, 2012, 9, 065002.	0.8	134
275	Low Frequency Vibrations Induce Malformations in Two Aquatic Species in a Frequency-, Waveform-, and Direction-Specific Manner. PLoS ONE, 2012, 7, e51473.	1.1	15
276	Transmembrane voltage potential controls embryonic eye patterning in <i>Xenopus laevis</i> . Development (Cambridge), 2012, 139, 313-323.	1.2	156
277	Inhibition of Planar Cell Polarity Extends Neural Growth During Regeneration, Homeostasis, and Development, 2012, 21, 2085-2094.	1.1	28
278	General Principles for Measuring Resting Membrane Potential and Ion Concentration Using Fluorescent Bioelectricity Reporters. Cold Spring Harbor Protocols, 2012, 2012, pdb.top067710.	0.2	71
279	Measuring Resting Membrane Potential Using the Fluorescent Voltage Reporters DiBAC ₄ (3) and CC2-DMPE. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067702.	0.2	93
280	Normalized shape and location of perturbed craniofacial structures in the <i>Xenopus</i> tadpole reveal an innate ability to achieve correct morphology. Developmental Dynamics, 2012, 241, 863-878.	0.8	88
281	Photoconversion for Tracking the Dynamics of Cell Movement in <i>Xenopus laevis</i> Embryos. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot068502.	0.2	1
282	Polarity proteins are required for left–right axis orientation and twin–twin instruction. Genesis, 2012, 50, 219-234.	0.8	19
283	Molecular bioelectricity in developmental biology: New tools and recent discoveries. BioEssays, 2012, 34, 205-217.	1.2	214
284	The wisdom of the body: future techniques and approaches to morphogenetic fields in regenerative medicine, developmental biology and cancer. Regenerative Medicine, 2011, 6, 667-673.	0.8	76
285	Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes. Biomedical Optics Express, 2011, 2, 2383.	1.5	9
286	Low Frequency Vibrations Disrupt Left-Right Patterning in the Xenopus Embryo. PLoS ONE, 2011, 6, e23306.	1.1	13
287	Long-Distance Signals Are Required for Morphogenesis of the Regenerating Xenopus Tadpole Tail, as Shown by Femtosecond-Laser Ablation. PLoS ONE, 2011, 6, e24953.	1.1	24
288	Histone deacetylase activity is necessary for left-right patterning during vertebrate development. BMC Developmental Biology, 2011, 11, 29.	2.1	61

#	Article	IF	CITATIONS
289	A Chemical Genetics Approach Reveals H,K-ATPase-Mediated Membrane Voltage Is Required for Planarian Head Regeneration. Chemistry and Biology, 2011, 18, 77-89.	6.2	165
290	The H ⁺ Vacuolar ATPase Maintains Neural Stem Cells in the Developing Mouse Cortex. Stem Cells and Development, 2011, 20, 843-850.	1.1	78
291	Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway. DMM Disease Models and Mechanisms, 2011, 4, 67-85.	1.2	119
292	HDAC Activity Is Required during Xenopus Tail Regeneration. PLoS ONE, 2011, 6, e26382.	1.1	58
293	Far from solved: A perspective on what we know about early mechanisms of left–right asymmetry. Developmental Dynamics, 2010, 239, 3131-3146.	0.8	90
294	Far From Solved: A Perspective on What We Know About Early Mechanisms of Left-Right Asymmetry. Developmental Dynamics, 2010, 239, spcone-spcone.	0.8	0
295	BioDome regenerative sleeve for biochemical and biophysical stimulation of tissue regeneration. Medical Engineering and Physics, 2010, 32, 1065-1073.	0.8	25
296	A Second-Generation Device for Automated Training and Quantitative Behavior Analyses of Molecularly-Tractable Model Organisms. PLoS ONE, 2010, 5, e14370.	1.1	43
297	High-Throughput <i>Xenopus laevis</i> Immunohistochemistry Using Agarose Sections. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5532.	0.2	15
298	Consistent left-right asymmetry cannot be established by late organizers in Xenopus unless the late organizer is a conjoined twin. Development (Cambridge), 2010, 137, 1095-1105.	1.2	22
299	Induction of Vertebrate Regeneration by a Transient Sodium Current. Journal of Neuroscience, 2010, 30, 13192-13200.	1.7	171
300	NaV-Mediated Sodium Currents Are Necessary For Vertebrate Appendage Regeneration. Biophysical Journal, 2010, 98, 7a.	0.2	0
301	Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Developmental Biology, 2010, 339, 188-199.	0.9	176
302	The ATP-sensitive K+-channel (KATP) controls early left–right patterning in Xenopus and chick embryos. Developmental Biology, 2010, 346, 39-53.	0.9	49
303	Bioelectric controls of cell proliferation: Ion channels, membrane voltage and the cell cycle. Cell Cycle, 2009, 8, 3527-3536.	1.3	359
304	Is left-right asymmetry a form of planar cell polarity?. Development (Cambridge), 2009, 136, 355-366.	1.2	60
305	Particle tracking model of electrophoretic morphogen movement reveals stochastic dynamics of embryonic gradient. Developmental Dynamics, 2009, 238, 1923-1935.	0.8	23
306	Leftâ€right asymmetry in the chick embryo requires core planar cell polarity protein Vangl2. Genesis, 2009, 47, 719-728.	0.8	39

#	Article	IF	CITATIONS
307	Role of Membrane Potential in the Regulation of Cell Proliferation and Differentiation. Stem Cell Reviews and Reports, 2009, 5, 231-246.	5.6	388
308	Perspectives and open problems in the early phases of left–right patterning. Seminars in Cell and Developmental Biology, 2009, 20, 456-463.	2.3	56
309	Regeneration: Recent advances, major puzzles, and biomedical opportunities. Seminars in Cell and Developmental Biology, 2009, 20, 515-516.	2.3	3
310	Bioelectric mechanisms in regeneration: Unique aspects and future perspectives. Seminars in Cell and Developmental Biology, 2009, 20, 543-556.	2.3	164
311	Errors of Geometry: Regeneration in a broader perspective. Seminars in Cell and Developmental Biology, 2009, 20, 643-645.	2.3	11
312	What's left in asymmetry?. Developmental Dynamics, 2008, 237, 3453-3463.	0.8	32
313	Establishing and Maintaining a Colony of Planarians. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5053.	0.2	50
314	Live Imaging of Planarian Membrane Potential Using DiBAC ₄ (3): Figure 1 Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5055.	0.2	47
315	H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left–right asymmetry. Mechanisms of Development, 2008, 125, 353-372.	1.7	82
316	Tail Regeneration in <i>Xenopus laevis</i> as a Model for Understanding Tissue Repair. Journal of Dental Research, 2008, 87, 806-816.	2.5	71
317	Gene Knockdown in Planarians Using RNA Interference. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5054.	0.2	20
318	KCNQ1 and KCNE1 K ⁺ Channel Components are Involved in Early Left-Right Patterning in <i>Xenopus laevis</i> Embryos. Cellular Physiology and Biochemistry, 2008, 21, 357-372.	1.1	52
319	Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells. PLoS ONE, 2008, 3, e3737.	1.1	206
320	Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16608-16613.	3.3	101
321	Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling. DMM Disease Models and Mechanisms, 2008, 1, 131-143.	1.2	79
322	Planarians: A Versatile and Powerful Model System for Molecular Studies of Regeneration, Adult Stem Cell Regulation, Aging, and Behavior. Cold Spring Harbor Protocols, 2008, 2008, pdb.emo101.	0.2	33
323	H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development (Cambridge), 2007, 134, 1323-1335.	1.2	233
324	Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Developmental Biology, 2007, 301, 62-69.	0.9	214

#	Article	IF	CITATIONS
325	Gap Junctions Provide New Links in Left-Right Patterning. Cell, 2007, 129, 645-647.	13.5	27
326	smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis. Development (Cambridge), 2007, 134, 3121-3131.	1.2	95
327	Left–right patterning from the inside out: Widespread evidence for intracellular control. BioEssays, 2007, 29, 271-287.	1.2	113
328	Gap junctional communication in morphogenesis. Progress in Biophysics and Molecular Biology, 2007, 94, 186-206.	1.4	105
329	Large-scale biophysics: ion flows and regeneration. Trends in Cell Biology, 2007, 17, 261-270.	3.6	235
330	Of Minds and Embryos: Left-Right Asymmetry and the Serotonergic Controls of Pre-Neural Morphogenesis. Developmental Neuroscience, 2006, 28, 171-185.	1.0	119
331	Ion flow regulates left–right asymmetry in sea urchin development. Development Genes and Evolution, 2006, 216, 265-276.	0.4	63
332	Is the early left-right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embryonic asymmetry. Birth Defects Research Part C: Embryo Today Reviews, 2006, 78, 191-223.	3.6	65
333	Automated analysis of behavior: A computer-controlled system for drug screening and the investigation of learning. Journal of Neurobiology, 2006, 66, 977-990.	3.7	53
334	Evidence for the regulation of left-right asymmetry inCiona intestinalis by ion flux. Developmental Dynamics, 2006, 235, 1543-1553.	0.8	71
335	Mathematical model of morphogen electrophoresis through gap junctions. Developmental Dynamics, 2006, 235, 2144-2159.	0.8	61
336	Inverse drug screens: a rapid and inexpensive method for implicating molecular targets. Genesis, 2006, 44, 530-540.	0.8	50
337	Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development (Cambridge), 2006, 133, 1657-1671.	1.2	238
338	Serotonin Signaling Is a Very Early Step in Patterning of the Left-Right Axis in Chick and Frog Embryos. Current Biology, 2005, 15, 794-803.	1.8	245
339	Asymmetric expression of Syndecan-2 in early chick embryogenesis. Gene Expression Patterns, 2005, 5, 525-528.	0.3	10
340	Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left-right asymmetry. Developmental Dynamics, 2005, 234, 176-189.	0.8	65
341	Eye regeneration assay reveals an invariant functional left-right asymmetry in the early bilaterian, Dugesia japonica Laterality, 2005, 10, 193-205.	0.5	25
342	Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12572-12577.	3.3	92

#	Article	IF	CITATIONS
343	Left–right asymmetry in embryonic development: a comprehensive review. Mechanisms of Development, 2005, 122, 3-25.	1.7	426
344	BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos. Developmental Biology, 2005, 285, 156-168.	0.9	66
345	Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Developmental Biology, 2005, 287, 314-335.	0.9	144
346	Serotonin Transporter Function Is an Early Step in Left-Right Patterning in Chick and Frog Embryos. Developmental Neuroscience, 2005, 27, 349-363.	1.0	102
347	T <scp>he</scp> E <scp>mbryonic</scp> O <scp>rigins of</scp> L <scp>eft-</scp> R <scp>ight</scp> A <scp>symmetry</scp> . Critical Reviews in Oral Biology and Medicine, 2004, 15, 197-206.	4.4	72
348	A novel immunohistochemical method for evaluation of antibody specificity and detection of labile targets in biological tissue. Journal of Proteomics, 2004, 58, 85-96.	2.4	35
349	Bioelectromagnetics in morphogenesis. Bioelectromagnetics, 2003, 24, 295-315.	0.9	116
350	Motor protein control of ion flux is an early step in embryonic left-right asymmetry. BioEssays, 2003, 25, 1002-1010.	1.2	61
351	Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis. Development (Cambridge), 2003, 130, 4847-4858.	1.2	102
352	Asymmetries in H+/K+-ATPase and Cell Membrane Potentials Comprise a Very Early Step in Left-Right Patterning. Cell, 2002, 111, 77-89.	13.5	366
353	Early embryonic expression of ion channels and pumps in chick andXenopus development. Developmental Dynamics, 2002, 225, 469-484.	0.8	23
354	KATP channel activity is required for hatching inXenopus embryos. Developmental Dynamics, 2002, 225, 588-591.	0.8	11
355	Isolation and Community: A Review of the Role of Gap-Junctional Communication in Embryonic Patterning. Journal of Membrane Biology, 2002, 185, 177-192.	1.0	79
356	Left-Right Asymmetry Determination in Vertebrates. Annual Review of Cell and Developmental Biology, 2001, 17, 779-805.	4.0	192
357	Asymmetry of Body and Brain: Embryological and Twin Studies. , 2001, , 853-859.		1
358	Expression of connexin 30 inXenopus embryos and its involvement in hatching gland function. Developmental Dynamics, 2000, 219, 96-101.	0.8	23
359	Twinning and Embryonic Left-Right Asymmetry. Laterality, 1999, 4, 197-208.	0.5	6
360	Twinning and Embryonic Left-Right Asymmetry. Laterality, 1999, 4, 197-208.	0.5	27

#	Article	IF	CITATIONS
361	Cerberus regulates left–right asymmetry of the embryonic head and heart. Current Biology, 1999, 9, 931-938.	1.8	125
362	Left-Right Asymmetry in Animal Embryogenesis. , 1999, , 137-152.		2
363	Gap junction-mediated transfer of left-right patterning signals in the early chick blastoderm is upstream of <i>Shh</i> asymmetry in the node. Development (Cambridge), 1999, 126, 4703-4714.	1.2	156
364	Gap junction-mediated transfer of left-right patterning signals in the early chick blastoderm is upstream of Shh asymmetry in the node. Development (Cambridge), 1999, 126, 4703-14.	1.2	42
365	Evolutionary conservation of mechanisms upstream of asymmetricNodal expression: Reconciling chick andXenopus. , 1998, 23, 185-193.		27
366	Left–right asymmetry and the chick embryo. Seminars in Cell and Developmental Biology, 1998, 9, 67-76.	2.3	51
367	Gap Junctions Are Involved in the Early Generation of Left–Right Asymmetry. Developmental Biology, 1998, 203, 90-105.	0.9	195
368	The compulsion of chirality: toward an understanding of left-rightÂasymmetry. Genes and Development, 1998, 12, 763-769.	2.7	103
369	The roles of activin and follistatin signaling in chick gastrulation. International Journal of Developmental Biology, 1998, 42, 553-9.	0.3	29
370	Left/Right Patterning Signals and the Independent Regulation of Different Aspects ofSitusin the Chick Embryo. Developmental Biology, 1997, 189, 57-67.	0.9	207
371	Two molecular models of initial left-right asymmetry generation. Medical Hypotheses, 1997, 49, 429-435.	0.8	47
372	Left-right asymmetry in vertebrate embryogenesis. BioEssays, 1997, 19, 287-296.	1.2	105
373	Applied DC magnetic fields cause alterations in the time of cell divisions and developmental abnormalities in early sea urchin embryos. Bioelectromagnetics, 1997, 18, 255-263.	0.9	41
374	Laterality defects in conjoined twins. Nature, 1996, 384, 321-321.	13.7	116
375	Applied AC and DC magnetic fields cause alterations in the mitotic cycle of early sea urchin embryos. Bioelectromagnetics, 1995, 16, 231-240.	0.9	31
376	The evolution of understanding: A genetic algorithm model of the evolution of communication. BioSystems, 1995, 36, 167-178.	0.9	25
377	A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell, 1995, 82, 803-814.	13.5	777
378	Use of genetic algorithms to solve biomedical problems. M D Computing, 1995, 12, 193-9.	0.1	1

#	Article	IF	CITATIONS
379	A Julia set model of field-directed morphogenesis: developmental biology and artificial life. Bioinformatics, 1994, 10, 85-105.	1.8	3
380	Discontinuous and alternate q-system fractals. Computers and Graphics, 1994, 18, 873-884.	1.4	7
381	Molecular mechanisms establishing consistent left–right asymmetry during vertebrate embryogenesis. , 0, , 3-18.		0
382	Using Optogenetics In Vivo to Stimulate Regeneration in Xenopus laevis. , 0, , 66-76.		0
383	Scale invariant robot behavior with fractals. , 0, , .		5
384	Automated Shapeshifting for Function Recovery in Damaged Robots. , 0, , .		31