Olga Garaschuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10971570/publications.pdf

Version: 2024-02-01

147801 149698 11,318 57 31 56 citations h-index g-index papers 60 60 60 17219 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neuroinflammation in Alzheimer's disease. Lancet Neurology, The, 2015, 14, 388-405.	10.2	4,129
2	In vivo two-photon calcium imaging of neuronal networks. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7319-7324.	7.1	1,208
3	Clusters of Hyperactive Neurons Near Amyloid Plaques in a Mouse Model of Alzheimer's Disease. Science, 2008, 321, 1686-1689.	12.6	882
4	Brain tumour cells interconnect to a functional and resistant network. Nature, 2015, 528, 93-98.	27.8	787
5	Coupled Proliferation and Apoptosis Maintain the Rapid Turnover of Microglia in the Adult Brain. Cell Reports, 2017, 18, 391-405.	6.4	503
6	Large-scale oscillatory calcium waves in the immature cortex. Nature Neuroscience, 2000, 3, 452-459.	14.8	429
7	Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nature Methods, 2014, 11, 175-182.	19.0	319
8	Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. Journal of Physiology, 1998, 507, 219-236.	2.9	297
9	Cortical calcium waves in resting newborn mice. Nature Neuroscience, 2005, 8, 988-990.	14.8	249
10	Sparsification of neuronal activity in the visual cortex at eye-opening. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15049-15054.	7.1	240
11	Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nature Protocols, 2006, 1, 380-386.	12.0	237
12	Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18150-18155.	7.1	210
13	GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo. Nature Communications, 2015, 6, 7750.	12.8	187
14	Improved calcium imaging in transgenic mice expressing a troponin C–based biosensor. Nature Methods, 2007, 4, 127-129.	19.0	177
15	Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1014-1024.	4.1	113
16	Longitudinal PET-MRI reveals \hat{l}^2 -amyloid deposition and rCBF dynamics and connects vascular amyloidosis to quantitative loss of perfusion. Nature Medicine, 2014, 20, 1485-1492.	30.7	108
17	Intracellular Ca ²⁺ stores control in vivo neuronal hyperactivity in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1279-E1288.	7.1	97
18	Impairment of in vivo calcium signaling in amyloid plaque-associated microglia. Acta Neuropathologica, 2014, 127, 495-505.	7.7	88

#	Article	IF	CITATIONS
19	Optical monitoring of brain function in vivo: from neurons to networks. Pflugers Archiv European Journal of Physiology, 2006, 453, 385-396.	2.8	87
20	Network-wide dysregulation of calcium homeostasis in Alzheimer's disease. Cell and Tissue Research, 2014, 357, 427-438.	2.9	63
21	Troponin C-based biosensors: A new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. Cell Calcium, 2007, 42, 351-361.	2.4	62
22	Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2453-2467.	4.0	61
23	Soundâ€evoked network calcium transients in mouse auditory cortex <i>in vivo</i> . Journal of Physiology, 2012, 590, 899-918.	2.9	60
24	Intracellular calcium signalling in Alzheimer's disease. Journal of Cellular and Molecular Medicine, 2010, 14, 30-41.	3.6	58
25	In vivo calcium imaging of the aging and diseased brain. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 99-106.	6.4	57
26	Microglial calcium signaling in the adult, aged and diseased brain. Cell Calcium, 2013, 53, 159-169.	2.4	56
27	A new approach for ratiometric in vivo calcium imaging of microglia. Scientific Reports, 2017, 7, 6030.	3.3	55
28	Healthy Brain Aging Modifies Microglial Calcium Signaling In Vivo. International Journal of Molecular Sciences, 2019, 20, 589.	4.1	48
29	Novel Approaches to Monitor and Manipulate Single Neurons In Vivo. Journal of Neuroscience, 2004, 24, 9223-9227.	3.6	46
30	Wide-Field and Two-Photon Imaging of Brain Activity with Voltage and Calcium-Sensitive Dyes. Methods in Molecular Biology, 2009, 489, 43-79.	0.9	45
31	In vivo characterization of functional states of cortical microglia during peripheral inflammation. Brain, Behavior, and Immunity, 2020, 87, 243-255.	4.1	38
32	Highâ€resolution in vivo imaging of microglia using a versatile nongenetically encoded marker. European Journal of Immunology, 2012, 42, 2193-2196.	2.9	36
33	Oxidative Stress and Energy Metabolism in the Brain: Midlife as a Turning Point. Antioxidants, 2021, 10, 1715.	5.1	29
34	Monitoring in vivo function of cortical microglia. Cell Calcium, 2017, 64, 109-117.	2.4	27
35	Cell motility and migration as determinants of stem cell efficacy. EBioMedicine, 2020, 60, 102989.	6.1	26
36	In vivo odourant response properties of migrating adult-born neurons in the mouse olfactory bulb. Nature Communications, 2015, 6, 6349.	12.8	25

#	Article	IF	Citations
37	A bell-shaped dependence between amyloidosis and GABA accumulation in astrocytes in a mouse model of Alzheimer's disease. Neurobiology of Aging, 2018, 61, 187-197.	3.1	25
38	Two-Photon Chloride Imaging Using MQAE In Vitro and In Vivo. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot070037.	0.3	21
39	Imaging microcircuit function in healthy and diseased brain. Experimental Neurology, 2013, 242, 41-49.	4.1	21
40	Age-related changes in microglial physiology: the role for healthy brain ageing and neurodegenerative disorders. E-Neuroforum, 2017, 23, A182-A191.	0.1	13
41	Olfactory impairment in men and mice related to aging and amyloid-induced pathology. Pflugers Archiv European Journal of Physiology, 2021, 473, 805-821.	2.8	12
42	In vivo mechanisms of cortical network dysfunction induced by systemic inflammation. Brain, Behavior, and Immunity, 2021, 96, 113-126.	4.1	12
43	In Vivo Two-Photon Calcium Imaging Using Multicell Bolus Loading. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5482.	0.3	11
44	Single-Cell Electroporation for Measuring In Vivo Calcium Dynamics in Microglia. Methods in Molecular Biology, 2019, 2034, 231-241.	0.9	10
45	The Interplay between cGMP and Calcium Signaling in Alzheimer's Disease. International Journal of Molecular Sciences, 2022, 23, 7048.	4.1	8
46	Two-Photon Imaging of Neural Networks in a Mouse Model of Alzheimer's Disease. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot065789.	0.3	7
47	Spontaneous calcium transients in the immature adult-born neurons of the olfactory bulb. Cell Calcium, 2018, 74, 43-52.	2.4	7
48	Microglia in neuropathology caused by protozoan parasites. Biological Reviews, 2020, 95, 333-349.	10.4	7
49	Role of intracellular Ca2+ stores for an impairment of visual processing in a mouse model of Alzheimer's disease. Neurobiology of Disease, 2019, 121, 315-326.	4.4	5
50	Unique Functional Properties of Mature Adult-Born Neurons in the Mouse Olfactory Bulb. Stem Cell Reports, 2020, 15, 1333-1346.	4.8	5
51	Stable behavioral state-specific large scale activity patterns in the developing cortex of neonates. Cell Calcium, 2021, 98, 102448.	2.4	4
52	Monitoring Calcium Levels With Genetically Encoded Indicators. Neuromethods, 2010, , 101-117.	0.3	3
53	Labeling Microglia with Genetically Encoded Calcium Indicators. Methods in Molecular Biology, 2019, 2034, 243-265.	0.9	2
54	Role of presynaptic calcium stores for neural network dysfunction in Alzheimer's disease. Neural Regeneration Research, 2018, 13, 977.	3.0	2

#	Article	IF	CITATIONS
55	In Vivo Functional Imaging of the Olfactory Bulb at Single-Cell Resolution. Neuromethods, 2011, , 21-43.	0.3	1
56	Imaging Morphology and Function of Cortical Microglia. Neuromethods, 2014, , 209-223.	0.3	1
57	In Vivo Ca2+ Imaging of the Living Brain Using Multi-cell Bolus Loading Technique. Neuromethods, 2010, , 205-220.	0.3	0