Beverley Anne Orser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1097040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perioperative Neurocognitive Screening Tools for At-Risk Surgical Patients. Neurology: Clinical Practice, 2022, 12, 76-84.	1.6	2
2	In reply: Initiatives to support rural access to anesthesia. Canadian Journal of Anaesthesia, 2022, , 1.	1.6	0
3	Before the Next Wave: Reducing Viral Infections Among Health Care Workers Performing Tracheal Intubation. Anesthesia and Analgesia, 2022, 134, e30-e31.	2.2	0
4	Cognitive decline among older adults: A hidden preexisting condition and its role in â€ ⁻ brainâ€atâ€risk' surgical patients. Brain and Behavior, 2021, 11, e02095.	2.2	2
5	Inhibition of a tonic inhibitory conductance in mouse hippocampal neurones by negative allosteric modulators of α5 subunit-containing γ-aminobutyric acid type A receptors: implications for treating cognitive deficits. British Journal of Anaesthesia, 2021, 126, 674-683.	3.4	8
6	Anesthesiology: Resetting Our Sights on Long-term Outcomes: The 2020 John W. Severinghaus Lecture on Translational Science. Anesthesiology, 2021, 135, 18-30.	2.5	3
7	Cognitive Outcomes after DEXmedetomidine sedation in cardiac surgery: CODEX randomised controlled trial protocol. BMJ Open, 2021, 11, e046851.	1.9	3
8	Improving anesthesia care and pain medicine in rural Canada: nothing about us without us. Canadian Journal of Anaesthesia, 2021, 68, 1731-1737.	1.6	5
9	The International Anesthesia Research Society Coronavirus Disease 2019 Pandemic Scientific Advisory Board: Supporting a Pandemic of Positivity. Anesthesia and Analgesia, 2021, 133, 903-905.	2.2	1
10	2020 Severinghaus Lecture on Translational Science: Reply. Anesthesiology, 2021, , .	2.5	0
11	GABAA Receptors in Astrocytes Are Targets for Commonly Used Intravenous and Inhalational General Anesthetic Drugs. Frontiers in Aging Neuroscience, 2021, 13, 802582.	3.4	5
12	Perioperative Neurocognitive Disorder. Anesthesiology, 2020, 132, 55-68.	2.5	106
13	Inhibiting α5 Subunit-Containing γ-Aminobutyric Acid Type A Receptors Attenuates Cognitive Deficits After Traumatic Brain Injury. Critical Care Medicine, 2020, 48, 533-544.	0.9	10
14	Canada needs a national strategy for anesthesia services in rural and remote regions. Cmaj, 2020, 192, E861-E863.	2.0	21
15	Targeting microglia to mitigate perioperative neurocognitive disorders. British Journal of Anaesthesia, 2020, 125, 229-232.	3.4	10
16	Developing practice guidelines for anesthesia services in rural Canada: the importance of the family physician perspective. Canadian Journal of Anaesthesia, 2020, 67, 1653-1654.	1.6	2
17	In Response. Anesthesia and Analgesia, 2020, 131, e134-e134.	2.2	0
18	Sedating ventilated COVID-19 patients with inhalational anesthetic drugs. EBioMedicine, 2020, 55, 102770.	6.1	14

#	Article	IF	CITATIONS
19	Global PRoMiSe (Perioperative Recommendations for Medication Safety): protocol for a mixed-methods study. BMJ Open, 2020, 10, e038313.	1.9	3
20	Nitrous oxide as a putative novel dual-mechanism treatment for bipolar depression: Proof-of-concept study design and methodology. Contemporary Clinical Trials Communications, 2020, 19, 100600.	1.1	8
21	Locating and repurposing anesthetic machines as intensive care unit ventilators during the COVID-19 pandemic. Canadian Journal of Anaesthesia, 2020, 67, 1066-1067.	1.6	2
22	Recommendations for Endotracheal Intubation of COVID-19 Patients. Anesthesia and Analgesia, 2020, 130, 1109-1110.	2.2	164
23	Towards a Comprehensive Understanding of Anesthetic Mechanisms of Action: A Decade of Discovery. Trends in Pharmacological Sciences, 2019, 40, 464-481.	8.7	156
24	Gabapentin increases expression of δsubunit-containing GABAA receptors. EBioMedicine, 2019, 42, 203-213.	6.1	33
25	Predictive factors for sleep apnoea in patients on opioids for chronic pain. BMJ Open Respiratory Research, 2019, 6, e000523.	3.0	23
26	GABAA Receptor Theory of Perioperative Neurocognitive Disorders. Anesthesiology, 2019, 130, 618-619.	2.5	9
27	Musings from an Unlikely Clinician–Scientist. Anesthesiology, 2019, 131, 795-800.	2.5	1
28	Improving Access to Safe Anesthetic Care in Rural and Remote Communities in Affluent Countries. Anesthesia and Analgesia, 2019, 129, 294-300.	2.2	22
29	Anesthesiology in the 21st century: our science is our destiny. Canadian Journal of Anaesthesia, 2019, 66, 1-13.	1.6	3
30	SmartTots Update Regarding Anesthetic Neurotoxicity in the Developing Brain. Anesthesia and Analgesia, 2018, 126, 1393-1396.	2.2	40
31	Ketamine augmentation for major depressive disorder and suicidal ideation: Preliminary experience in an inpatient psychiatry setting. Journal of Affective Disorders, 2018, 241, 103-109.	4.1	21
32	Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery—2018. British Journal of Anaesthesia, 2018, 121, 1005-1012.	3.4	420
33	Dexmedetomidine Prevents Excessive Î ³ -Aminobutyric Acid Type A Receptor Function after Anesthesia. Anesthesiology, 2018, 129, 477-489.	2.5	44
34	High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors. Anesthesiology, 2017, 127, 89-97.	2.5	11
35	Ketamine Increases the Function of γ-Aminobutyric Acid Type A Receptors in Hippocampal and Cortical Neurons. Anesthesiology, 2017, 126, 666-677.	2.5	43
36	Preventing delirium: beyond dexmedetomidine. Lancet, The, 2017, 389, 1009.	13.7	5

#	Article	IF	CITATIONS
37	Reduced expression of α5GABAA receptors elicits autism-like alterations in EEG patterns and sleep-wake behavior. Neurotoxicology and Teratology, 2017, 61, 115-122.	2.4	19
38	α5GABA _A Receptors Mediate Tonic Inhibition in the Spinal Cord Dorsal Horn and Contribute to the Resolution Of Hyperalgesia. Journal of Neuroscience Research, 2017, 95, 1307-1318.	2.9	27
39	Î-Subunit Containing GABAA Receptors Modulate Respiratory Networks. Scientific Reports, 2017, 7, 18105.	3.3	5
40	Sex-Dependent Anti-Stress Effect of an α5 Subunit Containing GABAA Receptor Positive Allosteric Modulator. Frontiers in Pharmacology, 2016, 7, 446.	3.5	60
41	Perioperative Medication Errors. Anesthesiology, 2016, 124, 1-3.	2.5	30
42	P3â€┨11: Do Postanesthetic Memory Deficits and Alzheimer's Disease Share A Common Signaling Pathway?. Alzheimer's and Dementia, 2016, 12, P861.	0.8	0
43	The GAS trial. Lancet, The, 2016, 387, 1613-1614.	13.7	0
44	Single and repeated exposures to the volatile anesthetic isoflurane do not impair operant performance in aged rats. NeuroToxicology, 2016, 56, 159-169.	3.0	7
45	Tranexamic acid–associated seizures: Causes and treatment. Annals of Neurology, 2016, 79, 18-26.	5.3	196
46	δGABAA Receptors Are Necessary for Synaptic Plasticity in the Hippocampus: Implications for Memory Behavior. Anesthesia and Analgesia, 2016, 123, 1247-1252.	2.2	15
47	<i>α</i> 5GABA _A receptor deficiency causes autismâ€like behaviors. Annals of Clinical and Translational Neurology, 2016, 3, 392-398.	3.7	43
48	Unlocking the Mechanisms of Anesthesia. Anesthesia and Analgesia, 2016, 123, 1070-1071.	2.2	1
49	In Reply. Anesthesiology, 2016, 125, 604-605.	2.5	0
50	Anesthesia research training: preparing for the future of our speciality. Canadian Journal of Anaesthesia, 2016, 63, 633-634.	1.6	2
51	Inflammation Increases Neuronal Sensitivity to General Anesthetics. Anesthesiology, 2016, 124, 417-427.	2.5	35
52	Managing Ebola. Anesthesia and Analgesia, 2015, 121, 834-835.	2.2	6
53	Understanding Anesthesia-Induced Memory Loss. , 2015, , 847-858.		1
54	Â6-Containing GABAA Receptors Are the Principal Mediators of Inhibitory Synapse Strengthening by Insulin in Cerebellar Granule Cells. Journal of Neuroscience, 2015, 35, 9676-9688.	3.6	25

#	Article	IF	CITATIONS
55	Altered expression of δGABAA receptors in health and disease. Neuropharmacology, 2015, 88, 24-35.	4.1	63
56	Thalamic Î'-Subunit Containing GABA _A Receptors Promote Electrocortical Signatures of Deep Non-REM Sleep But Do Not Mediate the Effects of Etomidate at the Thalamus <i>In Vivo</i> . Journal of Neuroscience, 2014, 34, 12253-12266.	3.6	24
57	Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABAA receptor δ subunit in cerebellar granule neurons and delays motor development in rats. Neuropharmacology, 2014, 79, 262-274.	4.1	28
58	Hydrogen Peroxide Increases GABAA Receptor-Mediated Tonic Current in Hippocampal Neurons. Journal of Neuroscience, 2014, 34, 10624-10634.	3.6	25
59	Sustained increase in α5GABAA receptor function impairs memory after anesthesia. Journal of Clinical Investigation, 2014, 124, 5437-5441.	8.2	140
60	Gabapentin reduces preoperative anxiety and pain catastrophizing in highly anxious patients prior to major surgery: a blinded randomized placebo-controlled trial. Canadian Journal of Anaesthesia, 2013, 60, 432-443.	1.6	46
61	Review article: Improving drug safety for patients undergoing anesthesia and surgery. Canadian Journal of Anaesthesia, 2013, 60, 127-135.	1.6	32
62	γâ€∎minobutyric acid type A receptors that contain the δ subunit promote memory and neurogenesis in the dentate gyrus. Annals of Neurology, 2013, 74, 611-621.	5.3	40
63	Acutely increasing δGABAA receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus. Frontiers in Neural Circuits, 2013, 7, 146.	2.8	43
64	Hyperpolarization-Activated Current (Ih) Is Reduced in Hippocampal Neurons from Gabra5â^'/â^' Mice. PLoS ONE, 2013, 8, e58679.	2.5	23
65	Inhibition of α5 γ-Aminobutyric Acid Type A Receptors Restores Recognition Memory After General Anesthesia. Anesthesia and Analgesia, 2012, 114, 845-855.	2.2	66
66	Memory Deficits Induced by Inflammation Are Regulated by α5-Subunit-Containing GABAA Receptors. Cell Reports, 2012, 2, 488-496.	6.4	147
67	Canadian Anesthesiologists' Society 2011 Royal College Lecture: Anesthesiology: A Profession at a Crossroads. Canadian Journal of Anaesthesia, 2012, 59, 882-888.	1.6	Ο
68	Tranexamic acid concentrations associated with human seizures inhibit glycine receptors. Journal of Clinical Investigation, 2012, 122, 4654-4666.	8.2	151
69	Sleep and Anesthesia: Neural Correlates in Theory and Experiment. Canadian Journal of Anaesthesia, 2012, 59, 236-237.	1.6	2
70	The sedative but not the memory-blocking properties of ethanol are modulated by α5-subunit-containing γ-aminobutyric acid type A receptors. Behavioural Brain Research, 2011, 217, 379-385.	2.2	10
71	Intraoperative Awareness. Anesthesiology, 2011, 114, 1218-1233.	2.5	89
72	Pharmacological enhancement of δ-subunit-containing GABAA receptors that generate a tonic inhibitory conductance in spinal neurons attenuates acute nociception in mice. Pain, 2011, 152, 1317-1326.	4.2	60

#	Article	IF	CITATIONS
73	Inhibition de l'apprentissage et de la mémoire par les anesthésiques généraux. Canadian Journal of Anaesthesia, 2011, 58, 167-177.	1.6	48
74	Mechanisms of anesthesia: past, present, and a glimpse into the future. Canadian Journal of Anaesthesia, 2011, 58, 131-138.	1.6	3
75	An anti-coagulation agent Futhan preferentially targets GABA(A) receptors in lungepithelia: implication in treating asthma. International Journal of Physiology, Pathophysiology and Pharmacology, 2011, 3, 249-56.	0.8	4
76	α5GABA _A Receptor Activity Sets the Threshold for Long-Term Potentiation and Constrains Hippocampus-Dependent Memory. Journal of Neuroscience, 2010, 30, 5269-5282.	3.6	156
77	α5 Subunit-containing GABAA receptors mediate a slowly decaying inhibitory synaptic current in CA1 pyramidal neurons following Schaffer collateral activation. Neuropharmacology, 2010, 58, 668-675.	4.1	44
78	Short-term Memory Impairment after Isoflurane in Mice Is Prevented by the α5 γ-Aminobutyric Acid Type A Receptor Inverse Agonist L-655,708. Anesthesiology, 2010, 113, 1061-1071.	2.5	99
79	The physiological properties and therapeutic potential of α5-GABAA receptors. Biochemical Society Transactions, 2009, 37, 1334-1337.	3.4	32
80	Distinct properties of murine α5 γâ€ a minobutyric acid type a receptors revealed by biochemical fractionation and mass spectroscopy. Journal of Neuroscience Research, 2009, 87, 1737-1747.	2.9	22
81	Silence, power and communication in the operating room. Journal of Advanced Nursing, 2009, 65, 1390-1399.	3.3	104
82	Etomidate Targets α5γ-Aminobutyric Acid Subtype A Receptors to Regulate Synaptic Plasticity and Memory Blockade. Anesthesiology, 2009, 111, 1025-1035.	2.5	83
83	CABAA receptor subtypes underlying general anesthesia. Pharmacology Biochemistry and Behavior, 2008, 90, 105-112.	2.9	84
84	Awareness during anesthesia. Cmaj, 2008, 178, 185-188.	2.0	51
85	Medication Safety in the Operating Room: Teaming Up to Improve Patient Safety. Healthcare Quarterly, 2008, 11, 54-57.	0.7	12
86	Insulin Increases the Potency of Glycine at Ionotropic Glycine Receptors. Molecular Pharmacology, 2007, 71, 1277-1287.	2.3	18
87	α5GABA _A Receptors Regulate the Intrinsic Excitability of Mouse Hippocampal Pyramidal Neurons. Journal of Neurophysiology, 2007, 98, 2244-2254.	1.8	109
88	A GABAergic system in airway epithelium is essential for mucus overproduction in asthma. Nature Medicine, 2007, 13, 862-867.	30.7	174
89	Lifting the Fog around Anesthesia. Scientific American, 2007, 296, 54-61.	1.0	31
90	Extrasynaptic GABA _A Receptors Are Critical Targets for Sedative-Hypnotic Drugs. Journal of Clinical Sleep Medicine, 2006, 02, .	2.6	56

#	Article	IF	CITATIONS
91	Gabapentin Increases a Tonic Inhibitory Conductance in Hippocampal Pyramidal Neurons. Anesthesiology, 2006, 105, 325-333.	2.5	19
92	Intubation of SARS patients: infection and perspectives of healthcare workers. Canadian Journal of Anaesthesia, 2006, 53, 122-129.	1.6	101
93	Drug safety in Canada: 2 steps forward, 1 step back. Cmaj, 2006, 174, 66-66.	2.0	1
94	Â5GABAA Receptors Mediate the Amnestic But Not Sedative-Hypnotic Effects of the General Anesthetic Etomidate. Journal of Neuroscience, 2006, 26, 3713-3720.	3.6	219
95	Extrasynaptic GABAA receptors are critical targets for sedative-hypnotic drugs. Journal of Clinical Sleep Medicine, 2006, 2, S12-8.	2.6	39
96	The α5 GABAA receptor subunit confers resistance to isoflurane inhibition. International Congress Series, 2005, 1283, 189-192.	0.2	0
97	Anesthetic sensitivity is reduced in hippocampal pyramidal neurons from GABAA receptor α5 subunit null mutant mice. International Congress Series, 2005, 1283, 38-42.	0.2	0
98	Emerging molecular mechanisms of general anesthetic action. Trends in Pharmacological Sciences, 2005, 26, 503-510.	8.7	487
99	Selective Enhancement of Tonic GABAergic Inhibition in Murine Hippocampal Neurons by Low Concentrations of the Volatile Anesthetic Isoflurane. Journal of Neuroscience, 2004, 24, 8454-8458.	3.6	153
100	Anesthesia-related medication error: time to take action. Canadian Journal of Anaesthesia, 2004, 51, 756-760.	1.6	34
101	Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by Â5 subunit-containing Â-aminobutyric acid type A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3662-3667.	7.1	510
102	Tonically Activated GABAA Receptors in Hippocampal Neurons Are High-Affinity, Low-Conductance Sensors for Extracellular GABA. Molecular Pharmacology, 2003, 63, 2-8.	2.3	164
103	Desensitization of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors Facilitates Use-Dependent Inhibition by Pentobarbital. Molecular Pharmacology, 2003, 64, 395-406.	2.3	17
104	Inhaled Anesthetics and Immobility: Mechanisms, Mysteries, and Minimum Alveolar Anesthetic Concentration. Anesthesia and Analgesia, 2003, 97, 718-740.	2.2	265
105	Mechanisms of general anesthesia. Current Opinion in Anaesthesiology, 2002, 15, 427-433.	2.0	28
106	New opportunities for anesthesia research in Canada. Canadian Journal of Anaesthesia, 2002, 49, 895-899.	1.6	8
107	Tyrosine kinases enhance the function of glycine receptors in rat hippocampal neurons and human $\hat{l}\pm1\hat{l}^2$ glycine receptors. Journal of Physiology, 2002, 539, 495-502.	2.9	25
108	Reply. Canadian Journal of Anaesthesia, 2001, 48, 614-614.	1.6	0

#	Article	IF	CITATIONS
109	Medication errors in anesthetic practice: a survey of 687 practitioners. Canadian Journal of Anaesthesia, 2001, 48, 139-146.	1.6	171
110	Propofol-benzodiazepine interactions: insights from a "bench to bedside―approach. Canadian Journal of Anaesthesia, 2001, 48, 431-434.	1.6	7
111	Distinct Functional and Pharmacological Properties of Tonic and Quantal Inhibitory Postsynaptic Currents Mediated by γ-Aminobutyric Acid _A Receptors in Hippocampal Neurons. Molecular Pharmacology, 2001, 59, 814-824.	2.3	335
112	Medication safety in anesthetic practice: first do no harm. Canadian Journal of Anaesthesia, 2000, 47, 1051-1054.	1.6	24
113	Multiple sites of action of neomycin, Mg2+and spermine on the NMDA receptors of rat hippocampal CA1 pyramidal neurones. Journal of Physiology, 1998, 512, 29-46.	2.9	26
114	Magnesium deficiency increases ketamine sensitivity in rats. Canadian Journal of Anaesthesia, 1997, 44, 883-890.	1.6	17
115	Medication labels: for whose benefit?. Canadian Journal of Anaesthesia, 1996, 43, 194-195.	1.6	3
116	Inhibition by propofol (2,6 diâ€isopropylphenol) of the Nâ€methylâ€Dâ€aspartate subtype of glutamate receptor in cultured hippocampal neurones. British Journal of Pharmacology, 1995, 116, 1761-1768.	5.4	209
117	An anaesthetic drug error: minimizing the risk. Canadian Journal of Anaesthesia, 1994, 41, 120-124.	1.6	47
118	Propranolol protection from bupivacaine toxicity. Canadian Journal of Anaesthesia, 1992, 39, 407-408.	1.6	3