## Amir Schajnovitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10967091/publications.pdf Version: 2024-02-01



AMID SCHAINOVITZ

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance. Cell Metabolism, 2020, 32, 391-403.e6.                                                                                        | 16.2 | 79        |
| 2  | Rapid Mobilization Reveals a Highly Engraftable Hematopoietic Stem Cell. Cell, 2018, 172, 191-204.e10.                                                                                                    | 28.9 | 92        |
| 3  | The Wave2 scaffold Hem-1 is required for transition of fetal liver hematopoiesis to bone marrow.<br>Nature Communications, 2018, 9, 2377.                                                                 | 12.8 | 15        |
| 4  | Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature, 2016, 532, 323-328.                                                                                                    | 27.8 | 553       |
| 5  | Inhibition of Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute Myeloid<br>Leukemia. Cell, 2016, 167, 171-186.e15.                                                                 | 28.9 | 353       |
| 6  | Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nature Biotechnology, 2016, 34, 738-745.                            | 17.5 | 176       |
| 7  | Inhibition of the Enzyme Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute<br>Myeloid Leukemia. Blood, 2016, 128, 1656-1656.                                                       | 1.4  | 3         |
| 8  | Rapid Mobilization Reveals a Highly Engraftable Hematopoietic Stem Cell. Blood, 2016, 128, 368-368.                                                                                                       | 1.4  | 0         |
| 9  | Distinct Bone Marrow Blood Vessels Differentially Regulate Normal and Malignant Hematopoietic<br>Stem and Progenitor Cells. Blood, 2015, 126, 664-664.                                                    | 1.4  | 1         |
| 10 | Bone's dark side: mutated osteoblasts implicated in leukemia. Cell Research, 2014, 24, 383-384.                                                                                                           | 12.0 | 5         |
| 11 | Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning. Blood, 2014, 124, 2937-2947.                                    | 1.4  | 39        |
| 12 | Human and Murine β-Defensin-Derived Peptides Induce Rapid Mobilization Of Murine Hematopoietic Stem and Progenitor Cells Via Activation Of CXCR4 Signaling and CXCL12 Release. Blood, 2013, 122, 890-890. | 1.4  | 0         |
| 13 | S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood, 2012, 119, 2478-2488.                                                               | 1.4  | 175       |
| 14 | FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation. Blood, 2012, 120, 1843-1855.                               | 1.4  | 99        |
| 15 | Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nature Immunology, 2012, 13, 1072-1082.                                               | 14.5 | 196       |
| 16 | Enhanced c-Met activity promotes G-CSF–induced mobilization of hematopoietic progenitor cells via<br>ROS signaling. Blood, 2011, 117, 419-428.                                                            | 1.4  | 114       |
| 17 | CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nature Immunology, 2011, 12, 391-398.                               | 14.5 | 142       |
| 18 | Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia, 2011, 25, 1286-1296.                 | 7.2  | 180       |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Chemotactic Lipid S1P Regulates Hematopoietic Progenitor Cell Egress and Mobilization Via Its<br>Major Receptor S1P1 and by SDF-1 Inhibition In a p38/Akt/mTOR Dependent Manner. Blood, 2010, 116,<br>553-553. | 1.4 | 7         |
| 20 | Expansion of Normal and Leukemic Hematopoietic Progenitor Cells by PTH Requires bFGF Activation of c-Kit and Its Downstream JAK2/STAT5 Signaling Blood, 2009, 114, 2511-2511.                                      | 1.4 | 1         |
| 21 | Functional SDF-1 Secretion from BM Stromal Cells Is a Cell Contact-Dependent Event Mediated by Cx43 and Cx45 Gap-Junctions. Blood, 2008, 112, 319-319.                                                             | 1.4 | 0         |
| 22 | In Vivo Mobilization of Leukemic Human Precursor-B-ALL Cells by the CXCR4-Antagonist AMD3100 Is Via Secretion of SDF-1 and Synergistically by Catecholamine Action Blood, 2008, 112, 1920-1920.                    | 1.4 | 0         |
| 23 | Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance. SSRN Electronic<br>Journal, 0, , .                                                                                                     | 0.4 | 0         |