
George Gazetas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10966548/publications.pdf Version: 2024-02-01

CEORCE CAZETAS

#	Article	IF	CITATIONS
1	Soil, basin and soil–building–soil interaction effects on motions of Mexico City during seven earthquakes. Geotechnique, 2022, 72, 556-564.	4.0	2
2	Static and dynamic lateral non-linear pile–soil–pile interaction. Geotechnique, 2022, 72, 642-657.	4.0	8
3	Designing inelastic geotechnical systems on the basis of single design elastic response spectrum. Earthquake Engineering and Structural Dynamics, 2021, 50, 3505-3531.	4.4	3
4	Experimental Testing Conducted in the Course of the GIPIPE Project and Their Numerical Simulation. , 2021, , 51-87.		0
5	Vertical static and dynamic pile-to-pile interaction in non-linear soil. Geotechnique, 2020, 70, 432-447.	4.0	17
6	Soil, basin and soil–building–soil interaction effects on motions of Mexico City during seven earthquakes. Geotechnique, 2020, 70, 581-607.	4.0	12
7	ATC Mw7.1 Puebla–Morelos earthquake reconnaissance observations: Seismological, geotechnical, ground motions, site effects, and GIS mapping. Earthquake Spectra, 2020, 36, 5-30.	3.1	2
8	Database of rocking shallow foundation performance: Dynamic shaking. Earthquake Spectra, 2020, 36, 960-982.	3.1	24
9	Database of rocking shallow foundation performance: Slow-cyclic and monotonic loading. Earthquake Spectra, 2020, 36, 1585-1606.	3.1	14
10	Pipeline in dense sand subjected to tectonic deformation from normal or reverse faulting. Soil Dynamics and Earthquake Engineering, 2019, 127, 105780.	3.8	34
11	Elastic Stiffnesses of a Rigid Suction Caisson and Its Cylindrical Sidewall Shell. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2019, 145, .	3.0	13
12	Inelastic soil amplification in three sites during the Tokachi-oki MJMA 8.0 earthquake. Soil Dynamics and Earthquake Engineering, 2018, 110, 300-317.	3.8	4
13	PRENOLIN: International Benchmark on 1D Nonlinear Siteâ€Response Analysis—Validation Phase Exercise. Bulletin of the Seismological Society of America, 2018, , .	2.3	26
14	Physical and Numerical Modeling of Hybrid Foundations to Mitigate Seismic Fault Rupture Effects. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2018, 144, .	3.0	19
15	International Benchmark on Numerical Simulations for 1D, Nonlinear Site Response (PRENOLIN): Verification Phase Based on Canonical Cases. Bulletin of the Seismological Society of America, 2016, 106, 2112-2135.	2.3	91
16	Mitigation of reverse faulting deformation using a soil bentonite wall: Dimensional analysis, parametric study, design implications. Soil Dynamics and Earthquake Engineering, 2016, 89, 248-261.	3.8	26
17	Caisson Foundations Subjected to Seismic Faulting: Reduced-Scale Physical Modeling. Geotechnical, Geological and Earthquake Engineering, 2015, , 405-421.	0.2	1
18	Discussion on "On the rocking complex response of ancient multispondyle columns: a genious and challenging structural system requiring reliable solution― Meccanica, 2015, 50, 293-294.	2.0	0

#	Article	IF	CITATIONS
19	4th Ishihara lecture: Soil–foundation–structure systems beyond conventional seismic failure thresholds. Soil Dynamics and Earthquake Engineering, 2015, 68, 23-39.	3.8	62
20	Evaluation of seismic hazard for the assessment of historical elements at risk: description of input and selection of intensity measures. Bulletin of Earthquake Engineering, 2015, 13, 49-65.	4.1	31
21	Nonlinear analysis of earthquake fault rupture interaction with historic masonry buildings. Bulletin of Earthquake Engineering, 2015, 13, 83-95.	4.1	9
22	Geotechnical design with apparent seismic safety factors well-bellow 1. Soil Dynamics and Earthquake Engineering, 2014, 57, 37-45.	3.8	12
23	Centrifuge modeling of rockingâ€isolated inelastic RC bridge piers. Earthquake Engineering and Structural Dynamics, 2014, 43, 2341-2359.	4.4	50
24	Damage potential of near-fault records: sliding displacement against conventional "Intensity Measures― Bulletin of Earthquake Engineering, 2013, 11, 455-480.	4.1	48
25	Pushover and Seismic Response of Foundations on Stiff Clay: Analysis with P-Delta Effects. Earthquake Spectra, 2012, 28, 1589-1618.	3.1	34
26	Constitutive model for soil amplification of ground shaking: Parameter calibration, comparisons, validation. Soil Dynamics and Earthquake Engineering, 2012, 42, 255-274.	3.8	20
27	Sliding and overturning potential of Christchurch 2011 earthquake records. Earthquake Engineering and Structural Dynamics, 2012, 41, 1921-1944.	4.4	20
28	Cyclic lateral response of piles in dry sand: Finite element modeling and validation. Computers and Geotechnics, 2012, 44, 116-131.	4.7	79
29	Analysis of cut-and-cover tunnels against large tectonic deformation. Bulletin of Earthquake Engineering, 2010, 8, 283-307.	4.1	37
30	Numerical and Experimental Assessment of Advanced Concepts to Reduce Noise and Vibration on Urban Railway Turnouts. Journal of Transportation Engineering, 2009, 135, 279-287.	0.9	22
31	Train-Induced Vibrations on Urban Metro and Tram Turnouts. Journal of Transportation Engineering, 2009, 135, 397-405.	0.9	14
32	Numerical modeling of centrifuge cyclic lateral pile load experiments. Earthquake Engineering and Engineering Vibration, 2009, 8, 61-76.	2.3	34
33	A simplified model for lateral response of large diameter caisson foundations—Linear elastic formulation. Soil Dynamics and Earthquake Engineering, 2009, 29, 268-291.	3.8	83
34	Behaviour of deep immersed tunnel under combined normal fault rupture deformation and subsequent seismic shaking. Bulletin of Earthquake Engineering, 2008, 6, 213-239.	4.1	110
35	Evidence of beneficial role of inclined piles: observations and summary of numerical analyses. Bulletin of Earthquake Engineering, 2008, 6, 705-722.	4.1	83

Effects of Near-Fault Ground Shaking on Sliding Systems. , 2008, , .

#	Article	IF	CITATIONS
37	A Simplified Model for the Linear Elastic Analysis of Laterally Loaded Caissons. , 2008, , .		0
38	A Thermo-Poro-Visco-Plastic Shear Band Model for Seismic Triggering and Evolution of Catastrophic Landslides. Soils and Foundations, 2007, 47, 11-25.	3.1	17
39	Nonlinear Response of Deep Immersed Tunnel to Strong Seismic Shaking. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2007, 133, 1067-1090.	3.0	122
40	Seismic response of slender rigid structures with foundation uplifting. Soil Dynamics and Earthquake Engineering, 2007, 27, 642-654.	3.8	101
41	A model for grain-crushing-induced landslides—Application to Nikawa, Kobe 1995. Soil Dynamics and Earthquake Engineering, 2007, 27, 803-817.	3.8	47
42	Foundation–structure systems over a rupturing normal fault: Part I. Observations after the Kocaeli 1999 earthquake. Bulletin of Earthquake Engineering, 2007, 5, 253-275.	4.1	103
43	Foundation–structure systems over a rupturing normal fault: Part II. Analysis of the Kocaeli case histories. Bulletin of Earthquake Engineering, 2007, 5, 277-301.	4.1	80
44	Analysis of failures of guardrail base-plates in scissors crossovers of the Athens Metro: The role of foundation–structure interaction. Engineering Failure Analysis, 2007, 14, 765-782.	4.0	5
45	Shallow and Deep Foundations under Fault Rupture Or Strong Seismic Shaking. , 2007, , 185-215.		27
46	Static and dynamic response of massive caisson foundations with soil and interface nonlinearities—validation and results. Soil Dynamics and Earthquake Engineering, 2006, 26, 377-394.	3.8	68
47	Development of Winkler model for static and dynamic response of caisson foundations with soil and interface nonlinearities. Soil Dynamics and Earthquake Engineering, 2006, 26, 363-376.	3.8	109
48	Winkler model for lateral response of rigid caisson foundations in linear soil. Soil Dynamics and Earthquake Engineering, 2006, 26, 347-361.	3.8	144
49	Footings under seismic loading: Analysis and design issues with emphasis on bridge foundations. Soil Dynamics and Earthquake Engineering, 2006, 26, 824-853.	3.8	250
50	The role of soil in the collapse of 18 piers of Hanshin Expressway in the Kobe earthquake. Earthquake Engineering and Structural Dynamics, 2006, 35, 547-575.	4.4	83
51	The Collapse of the Hanshin Expressway (Fukae) Bridge, Kobe 1995: Soil-Foundation-Structure Interaction, Reconstruction, Seismic Isolation. , 2006, , 93-120.		4
52	Neural network analysis of overturning response under near-fault type excitation. Earthquake Engineering and Engineering Vibration, 2005, 4, 213-228.	2.3	21
53	PHENOMENOLOGICAL MODEL APPLIED TO INELASTIC RESPONSE OF SOIL-PILE INTERACTION SYSTEMS. Soils and Foundations, 2005, 45, 119-132.	0.7	63
54	CONSTITUTIVE MODEL FOR 1-D CYCLIC SOIL BEHAVIOUR APPLIED TO SEISMIC ANALYSIS OF LAYERED DEPOSITS. Soils and Foundations, 2005, 45, 147-159.	0.7	67

#	Article	IF	CITATIONS
55	Soil-Dependent Topographic Effects: A Case Study from the 1999 Athens Earthquake. Earthquake Spectra, 2005, 21, 929-966.	3.1	55
56	On the Linear Seismic Response of Soils With Modulus Varying as a Power of Depth-The Maliakos Marine Clay. Soils and Foundations, 2004, 44, 85-93.	3.1	19
57	Kinematic Pile Response to Vertical P-wave Seismic Excitation. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2002, 128, 860-867.	3.0	47
58	SEISMIC SOIL-STRUCTURE INTERACTION: BENEFICIAL OR DETRIMENTAL?. Journal of Earthquake Engineering, 2000, 4, 277-301.	2.5	413
59	Lateral Vibration and Internal Forces of Grouped Piles in Layered Soil. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 1999, 125, 16-25.	3.0	103
60	Vertical Vibration and Additional Distress of Grouped Piles in Layered Soil. Soils and Foundations, 1998, 38, 1-14.	3.1	52
61	SOIL-PILE-BRIDGE SEISMIC INTERACTION: KINEMATIC AND INERTIAL EFFECTS. PART I: SOFT SOIL. Earthquake Engineering and Structural Dynamics, 1997, 26, 337-359.	4.4	168
62	Discussion of "Impedance Function of Piles in Inhomogeneous Media―by Odysseus Michaelides and George Gazetas. Journal of Geotechcnical Engineering, 1995, 121, 235-236.	0.4	1
63	Simplified Approach for Pile and Foundation Interaction Analysis. Journal of Geotechcnical Engineering, 1995, 121, 228-230.	0.4	3
64	Dynamic Response of Concrete-Faced Rockfill Dams to Strong Seismic Excitation. Journal of Geotechcnical Engineering, 1995, 121, 185-197.	0.4	60
65	Permanent Deformation on Preexisting Sliding Surfaces in Dams. Journal of Geotechcnical Engineering, 1994, 120, 2041-2061.	0.4	46
66	Dynamic response of pile groups with different configurations. Soil Dynamics and Earthquake Engineering, 1993, 12, 239-257.	3.8	66
67	Discussion of " <i>Evaluation of In Situ Effective Shear Modulus from Dispersion Measurements</i> ― by Christos Vrettos and Bernd Prange (October, 1990, Vol. 116, No. 10). Journal of Geotechcnical Engineering, 1992, 118, 1120-1122.	0.4	5
68	Torsional Stiffness of Arbitrarily Shaped Embedded Foundations. Journal of Geotechcnical Engineering, 1992, 118, 1168-1185.	0.4	2
69	Torsional Radiation Damping of Arbitrarily Shaped Embedded Foundations. Journal of Geotechcnical Engineering, 1992, 118, 1186-1199.	0.4	1
70	Closure to "Free Vibration of Embedded Foundations: Theory versus Experiment―by George Gazetas and Kenneth H. Stokoe II (September, 1991, Vol. 117, No. 9). Journal of Geotechcnical Engineering, 1992, 118, 1864-1867.	0.4	0
71	Dynamic pile-soil-pile interaction. Part II: Lateral and seismic response. Earthquake Engineering and Structural Dynamics, 1992, 21, 145-162.	4.4	314
72	Dynamic Interaction Factors for Floating Pile Groups. Journal of Geotechcnical Engineering, 1991, 117, 1531-1548.	0.4	61

#	Article	IF	CITATIONS
73	Formulas and Charts for Impedances of Surface and Embedded Foundations. Journal of Geotechcnical Engineering, 1991, 117, 1363-1381.	0.4	443
74	Kinematic Seismic Response of Single Piles and Pile Groups. Journal of Geotechcnical Engineering, 1991, 117, 1860-1879.	0.4	167
75	Free Vibration of Embedded Foundations: Theory versus Experiment. Journal of Geotechcnical Engineering, 1991, 117, 1382-1401.	0.4	59
76	Dynamic pile-soil-pile interaction. Part I: Analysis of axial vibration. Earthquake Engineering and Structural Dynamics, 1991, 20, 115-132.	4.4	128
77	Foundation Vibrations. , 1991, , 553-593.		217
78	Local-soil and source-mechanism effects in the 1986 kalamata (Greece) earthquake. Earthquake Engineering and Structural Dynamics, 1990, 19, 431-456.	4.4	26
79	Rocking Damping of Arbitrarily Shaped Embedded Foundations. Journal of Geotechcnical Engineering, 1989, 115, 473-490.	0.4	30
80	Rocking Stiffness of Arbitrarily Shaped Embedded Foundations. Journal of Geotechcnical Engineering, 1989, 115, 457-472.	0.4	28
81	Closure to " <i>Dynamic Response of Arbitrarily Shaped Foundations: Experimental Verification</i> ― by Ricardo Dobry, George Gazetas and Kenneth H. Stokoe, II (February, 1986, Vol. 112, No. 2). Journal of Geotechcnical Engineering, 1987, 113, 1412-1416.	0.4	1
82	Discussion of " <i>Rigidâ€Plastic Analysis of Floating Plates</i> ―by Shankaranarayana U. Bhat and Paul C. Xirouchakis (June, 1985). Journal of Engineering Mechanics - ASCE, 1987, 113, 793-793.	2.9	0
83	Discussion of " Seismic Analysis of Concrete Face Rockfill Dams ―by Gilles Bureau, Richard L. Volpe, Wolfgang H. Roth, and Takekazu Udaka (pp. 479–508). Journal of Geotechcnical Engineering, 1987, 113, 1247-1251.	0.4	1
84	Vibration Characteristics of Dams in Narrow Canyons. Journal of Geotechcnical Engineering, 1987, 113, 899-904.	0.4	19
85	Horizontal Stiffness of Arbitrarily Shaped Embedded Foundations. Journal of Geotechcnical Engineering, 1987, 113, 440-457.	0.4	57
86	Horizontal Damping of Arbitrarily Shaped Embedded Foundations. Journal of Geotechcnical Engineering, 1987, 113, 458-475.	0.4	37
87	Seismic response of earth dams: some recent developments. Soil Dynamics and Earthquake Engineering, 1987, 6, 2-47.	3.8	184
88	Dynamic Response of Arbitrarily Shaped Foundations. Journal of Geotechcnical Engineering, 1986, 112, 109-135.	0.4	110
89	Dynamic Response of Arbitrarily Shaped Foundations: Experimental Verification. Journal of Geotechcnical Engineering, 1986, 112, 136-154.	0.4	40
90	Seismic shear vibration of embankment dams in semi-cylindrical valleys. Earthquake Engineering and Structural Dynamics, 1986, 14, 19-40.	4.4	22

#	Article	IF	CITATIONS
91	Seismic shear strains and seismic coefficients in dams and embankments. Soil Dynamics and Earthquake Engineering, 1986, 5, 75-83.	3.8	17
92	Loading of Anisotropic Quarter Plane. Journal of Engineering Mechanics - ASCE, 1986, 112, 1021-1040.	2.9	2
93	A class of inhomogeneous shear models for seismic response of dams and embankments. International Journal of Soil Dynamics and Earthquake Engineering, 1985, 4, 166-182.	0.2	50
94	Vertical Response of Arbitrarily Shaped Embedded Foundations. Journal of Geotechcnical Engineering, 1985, 111, 750-771.	0.4	47
95	Seismic response of end-bearing single piles. International Journal of Soil Dynamics and Earthquake Engineering, 1984, 3, 82-93.	0.2	102
96	Stochastic seismic sliding of rigid mass supported through non-symmetric friction. Earthquake Engineering and Structural Dynamics, 1984, 12, 777-794.	4.4	27
97	Discussion of " <i>Rocking Vibrations of Footings</i> ―by H. R. Sreekantiah (July, 1982). Journal of Geotechcnical Engineering, 1984, 110, 128-131.	0.4	Ο
98	Simple Radiation Damping Model for Piles and Footings. Journal of Engineering Mechanics - ASCE, 1984, 110, 937-956.	2.9	141
99	Horizontal Response of Piles in Layered Soils. Journal of Geotechcnical Engineering, 1984, 110, 20-40.	0.4	264
100	Torsional Vibration on Anisotropic Halfspace. Journal of Geotechcnical Engineering, 1984, 110, 1549-1558.	0.4	9
101	Analysis of machine foundation vibrations: State of the art. International Journal of Soil Dynamics and Earthquake Engineering, 1983, 2, 2-42.	0.2	319
102	Lateral Dynamic Response of Constrainedâ€Head Piles. Journal of Geotechcnical Engineering, 1983, 109, 1063-1081.	0.4	60
103	Vibrational characteristics of soil deposits with variable wave velocity. International Journal for Numerical and Analytical Methods in Geomechanics, 1982, 6, 1-20.	3.3	125
104	Shear vibration of vertically inhomogeneous earth dams. International Journal for Numerical and Analytical Methods in Geomechanics, 1982, 6, 219-241.	3.3	39
105	Stresses and Displacements in Cross-Anisotropic Soils. Journal of the Geotechnical Engineering Division, ASCE, 1982, 108, 532-553.	0.2	59
106	Progressive Collapse of Rigid-Plastic Circular Foundations. Journal of the Engineering Mechanics Division, 1982, 108, 493-508.	0.4	4
107	Vertical Oscillation of Earth and Rockfill Dams: Analysis and Field Observation. Soils and Foundations, 1981, 21, 56-68.	3.1	18
108	A New Dynamic Model for Earth Dams Evaluated Through Case Histories. Soils and Foundations, 1981, 21, 67-78.	3.1	21

#	Article	IF	CITATIONS
109	Variational Estimation of The Settlement of A Circular Raft On Anisotropic Soil. Soils and Foundations, 1981, 21, 109-116.	3.1	1
110	Dynamic compliance matrix of rigid strip footing bonded to a viscoelastic cross anisotropic halfspace. International Journal of Mechanical Sciences, 1981, 23, 547-559.	6.7	12
111	Ultimate Behavior of Continuous Footings in Tensionless Contact with a Three-Parameter Soil. Journal of Structural Mechanics, 1981, 9, 339-362.	0.6	8
112	Longitudinal Vibrations of Embankment Dams. Journal of the Geotechnical Engineering Division, ASCE, 1981, 107, 21-40.	0.2	12
113	Discussion of "Indentation of Anisotropic Halfspace by Yielding Circular Foundation― Journal of the Engineering Mechanics Division, 1981, 107, 695-704.	0.4	5
114	Elastic-Plastic Slabs on Elastic Foundation. Journal of the Structural Division, 1978, 104, 621-636.	0.2	13