
Young Jun Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10966470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carbon-templated strategy toward the synthesis of dense and yolk-shell multi-component transition metal oxide cathode microspheres for high-performance Li ion batteries. Journal of Power Sources, 2020, 461, 228115.	4.0	13
2	Superior electrochemical properties of micron-sized aggregates of (Co0.5Fe0.5)3O4 hollow nanospheres and graphitic carbon. Chemical Engineering Journal, 2018, 346, 351-360.	6.6	5
3	Mesoporous graphitic carbon microspheres with a controlled amount of amorphous carbon as an efficient Se host material for Li–Se batteries. Journal of Materials Chemistry A, 2018, 6, 4152-4160.	5.2	34
4	Superior lithium-ion storage performances of carbonaceous microspheres with high electrical conductivity and uniform distribution of Fe and TiO ultrafine nanocrystals for Li-S batteries. Carbon, 2018, 126, 394-403.	5.4	13
5	Rationally designed microspheres consisting of yolk–shell structured FeSe ₂ –Fe ₂ O ₃ nanospheres covered with graphitic carbon for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 15182-15190.	5.2	42
6	Alkali resistant Ni-loaded yolk-shell catalysts for direct internal reforming in molten carbonate fuel cells. Journal of Power Sources, 2017, 352, 1-8.	4.0	14
7	A new general approach to synthesizing filled and yolk–shell structured metal oxide microspheres by applying a carbonaceous template. Nanoscale, 2017, 9, 17991-17999.	2.8	20
8	Selenium-impregnated hollow carbon microspheres as efficient cathode materials for lithium-selenium batteries. Carbon, 2017, 111, 198-206.	5.4	58
9	Yolk–shell carbon microspheres with controlled yolk and void volumes and shell thickness and their application as a cathode material for Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 988-995.	5.2	46
10	Sodium-ion storage performance of hierarchically structured (Co _{1/3} Fe _{2/3})Se ₂ nanofibers with fiber-in-tube nanostructures. Journal of Materials Chemistry A, 2016, 4, 15471-15477.	5.2	42
11	A New Strategy for Humidity Independent Oxide Chemiresistors: Dynamic Selfâ€Refreshing of In ₂ O ₃ Sensing Surface Assisted by Layerâ€byâ€Layer Coated CeO ₂ Nanoclusters. Small, 2016, 12, 4229-4240.	5.2	195
12	Highly Active and Stable Pt-Loaded Ce _{0.75} Zr _{0.25} O ₂ Yolk–Shell Catalyst for Water–Gas Shift Reaction. ACS Applied Materials & Interfaces, 2016, 8, 17239-17244.	4.0	36
13	Highly sensitive and selective detection of ppb-level NO 2 using multi-shelled WO 3 yolk–shell spheres. Sensors and Actuators B: Chemical, 2016, 229, 561-569.	4.0	80
14	Strategy for yolk-shell structured metal oxide-carbon composite powders and their electrochemical properties for lithium-ion batteries. Carbon, 2016, 100, 137-144.	5.4	35
15	Electrochemical Properties of Fiberâ€inâ€Tube―and Filledâ€Structured TiO ₂ Nanofiber Anode Materials for Lithiumâ€ion Batteries. Chemistry - A European Journal, 2015, 21, 11082-11087.	1.7	31
16	Superior Electrochemical Properties of Nanofibers Composed of Hollow CoFe ₂ O ₄ Nanospheres Covered with Onion‣ike Graphitic Carbon. Chemistry - A European Journal, 2015, 21, 18202-18208.	1.7	26
17	General Formation of Tin Nanoparticles Encapsulated in Hollow Carbon Spheres for Enhanced Lithium Storage Capability. Small, 2015, 11, 2157-2163.	5.2	48
18	Kilogram-Scale Synthesis of Pd-Loaded Quintuple-Shelled Co ₃ O ₄ Microreactors and Their Application to Ultrasensitive and Ultraselective Detection of Methylbenzenes. ACS Applied Materials & Interfaces, 2015, 7, 7717-7723.	4.0	56

Young Jun Hong

#	Article	IF	CITATIONS
19	One-pot synthesis of core–shell-structured tin oxide–carbon composite powders by spray pyrolysis for use as anode materials in Li-ion batteries. Carbon, 2015, 88, 262-269.	5.4	34
20	Design and Synthesis of Bubble-Nanorod-Structured Fe ₂ O ₃ –Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries. ACS Nano, 2015, 9, 4026-4035.	7.3	426
21	Design and synthesis of micron-sized spherical aggregates composed of hollow Fe ₂ O ₃ nanospheres for use in lithium-ion batteries. Nanoscale, 2015, 7, 8361-8367.	2.8	65
22	ÂA New Concept for Obtaining SnO ₂ Fiberâ€inâ€Tube Nanostructures with Superior Electrochemical Properties. Chemistry - A European Journal, 2015, 21, 371-376.	1.7	61
23	Formation of core–shell-structured Zn2SnO4–carbon microspheres with superior electrochemical properties by one-pot spray pyrolysis. Nanoscale, 2015, 7, 701-707.	2.8	31
24	Superior electrochemical performances of double-shelled CuO yolk–shell powders formed from spherical copper nitrate–polyvinylpyrrolidone composite powders. RSC Advances, 2014, 4, 58231-58237.	1.7	6
25	High performance chemiresistive H ₂ S sensors using Ag-loaded SnO ₂ yolk–shell nanostructures. RSC Advances, 2014, 4, 16067-16074.	1.7	58
26	Oneâ€Pot Synthesis of Pd‣oaded SnO ₂ Yolk–Shell Nanostructures for Ultraselective Methyl Benzene Sensors. Chemistry - A European Journal, 2014, 20, 2737-2741.	1.7	93
27	Electrochemical properties of yolk-shell structured ZnFe2O4 powders prepared by a simple spray drying process as anode material for lithium-ion battery. Scientific Reports, 2014, 4, 5857.	1.6	88
28	Electrochemical properties of yolk–shell and hollow CoMn2O4 powders directly prepared by continuous spray pyrolysis as negative electrode materials for lithium ion batteries. RSC Advances, 2013, 3, 13110.	1.7	54
29	Electrochemical Properties of Yolkâ€5hell, Hollow, and Dense WO ₃ Particles Prepared by using Spray Pyrolysis. ChemSusChem, 2013, 6, 1320-1325.	3.6	41
30	One-pot synthesis of Fe2O3 yolk–shell particles with two, three, and four shells for application as an anode material in lithium-ion batteries. Nanoscale, 2013, 5, 11592.	2.8	65
31	Yolk–shelled cathode materials with extremely high electrochemical performances prepared by spray pyrolysis. Nanoscale, 2013, 5, 7867.	2.8	58
32	Characteristics of stabilized spinel cathode powders obtained by in-situ coating method. Journal of Power Sources, 2013, 244, 625-630.	4.0	9
33	Oneâ€Pot Facile Synthesis of Doubleâ€Shelled SnO ₂ Yolkâ€Shellâ€Structured Powders by Continuous Process as Anode Materials for Liâ€ion Batteries. Advanced Materials, 2013, 25, 2279-2283.	11.1	378
34	Superior electrochemical properties of Co3O4 yolk–shell powders with a filled core and multishells prepared by a one-pot spray pyrolysis. Chemical Communications, 2013, 49, 5678.	2.2	59
35	Oneâ€Pot Synthesis of Yolk–Shell Materials with Single, Binary, Ternary, Quaternary, and Quinary Systems. Small, 2013, 9, 2224-2227.	5.2	54
36	Batteries: Oneâ€Pot Facile Synthesis of Doubleâ€Shelled SnO ₂ Yolkâ€Shellâ€Structured Powders by Continuous Process as Anode Materials for Liâ€ion Batteries (Adv. Mater. 16/2013). Advanced Materials, 2013, 25, 2250-2250.	11.1	8

Young Jun Hong

#	Article	IF	CITATIONS
37	Yolk-Shell Materials: One-Pot Synthesis of Yolk-Shell Materials with Single, Binary, Ternary, Quaternary, and Quinary Systems (Small 13/2013). Small, 2013, 9, 2223-2223.	5.2	Ο
38	Electrochemical Properties of Yolk–Shell‣tructured CuO–Fe ₂ O ₃ Powders with Various Cu/Fe Molar Ratios Prepared by Oneâ€Pot Spray Pyrolysis. ChemSusChem, 2013, 6, 2299-2303.	3.6	20
39	Fine-sized Tb3Al5O12:Ce phosphor powders prepared by spray pyrolysis from spray solution with ethylenediaminetetraacetic acid. Electronic Materials Letters, 2012, 8, 283-287.	1.0	5
40	Electrochemical properties of 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 composite cathode powders prepared by large-scale spray pyrolysis. Materials Research Bulletin, 2012, 47, 2022-2026.	2.7	15
41	Electrochemical properties of Li2O–2B2O3 glass-modified LiMn2O4 powders prepared by spray pyrolysis process. Journal of Power Sources, 2012, 210, 110-115.	4.0	25
42	Properties of La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte formed from the nano-sized powders prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2011, 119, 752-756.	0.5	0
43	Size-controlled glass frits with spherical shape for Al electrodes in Si solar cells. Journal of the Ceramic Society of Japan, 2011, 119, 954-960.	0.5	1
44	Preparation of nanometer AlN powders by combining spray pyrolysis with carbothermal reduction and nitridation. Ceramics International, 2011, 37, 1967-1971.	2.3	18