P Balaram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10965863/publications.pdf

Version: 2024-02-01

199 papers 10,139 citations

54 h-index 92 g-index

203 all docs

203 docs citations

203 times ranked 5208 citing authors

#	Article	IF	CITATIONS
1	Glycation of albumin and its implication in Diabetes: A comprehensive analysis using mass spectrometry. Clinica Chimica Acta, 2021, 520, 108-117.	0.5	7
2	Cone snail analogs of the pituitary hormones oxytocin/vasopressin and their carrier protein neurophysin. Proteomic and transcriptomic identification of conopressins and conophysins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140391.	1.1	10
3	Cone snail prolyl-4-hydroxylase α-subunit sequences derived from transcriptomic data and mass spectrometric analysis of variable proline hydroxylation in C. amadis venom. Journal of Proteomics, 2019, 194, 37-48.	1.2	3
4	Mass spectrometric identification of bromotryptophan containing conotoxin sequences from the venom of C.Âamadis. Toxicon, 2018, 144, 68-74.	0.8	9
5	Structural characterization of folded and extended conformations in peptides containing \hat{I}^3 amino acids with proteinogenic side chains: crystal structures of \hat{I}^3 _n , ($\hat{I}\pm\hat{I}^3$) _n and $\hat{I}^3\hat{I}^3\hat{I}^3$ sequences. New Journal of Chemistry, 2015, 39, 3319-3326.	1.4	4
6	Detection of the protein dimers, multiple monomeric states and hydrated forms of Plasmodium falciparum triosephosphate isomerase in the gas phase. Protein Engineering, Design and Selection, 2009, 22, 289-304.	1.0	4
7	Cystine peptides Antiparallel Î ² -sheet conformation of the cyclic biscystine pep tide [Boc-Cys-Ala-Cys-NHCH3]2. International Journal of Peptide and Protein Research, 2009, 34, 37-41.	0.1	19
8	Characterization of folded conformations in a tetrapeptide containing two tryptophan residues by vibrational circular dichroism. Chirality, 2009, 21, E76-85.	1.3	7
9	The Indian Institute of Science: Marking a Centenary. Resonance, 2009, 14, 416-429.	0.2	o
10	De novo design: backbone conformational constraints in nucleating helices and \hat{l}^2 -hairpins. Chemical Biology and Drug Design, 2008, 54, 195-199.	1.2	34
11	A combined extended and helical backbone for Boc-(Ala-Leu-Ac7c-)2-OMe*. Chemical Biology and Drug Design, 2008, 63, 175-180.	1.2	11
12	Aromatic interactions in tryptophan-containing peptides: crystal structures of model tryptophan peptides and phenylalanine analogs*. Chemical Biology and Drug Design, 2008, 65, 113-129.	1.2	23
13	Expanding the polypeptide backbone: hydrogen-bonded conformations in hybrid polypeptides containing the higher homologues of \hat{I}_{\pm} -amino acids. Journal of the Royal Society Interface, 2007, 4, 587-606.	1.5	67
14	Tryptophan-containing peptide helices: interactions involving the indole side chain*. Chemical Biology and Drug Design, 2005, 66, 277-296.	1.2	22
15	\hat{A} , \hat{A} hybrid peptides: A polypeptide helix with a central segment containing two consecutive \hat{A} -amino acid residues. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16478-16482.	3.3	53
16	Conformational properties of hybrid peptides containing alpha- and omega-amino acids*. Chemical Biology and Drug Design, 2004, 63, 279-289.	1.2	43
17	Peptide helices with pendant cycloalkane rings. Characterization of conformations of 1-aminocyclooctane-1-carboxylic acid (Ac8 c) residues in peptides. Journal of Peptide Science, 2004, 10, 160-172.	0.8	7
18	Structures of Unliganded and Inhibitor Complexes of W168F, a Loop6 Hinge Mutant of Plasmodium falciparum Triosephosphate Isomerase: Observation of an Intermediate Position of Loop6. Journal of Molecular Biology, 2004, 343, 671-684.	2.0	15

#	Article	IF	Citations
19	Non-protein amino acids in peptide design. Journal of Chemical Sciences, 2003, 115, 373-400.	0.7	62
20	Crystal structure of a hydrophobic 19-residue peptide helix containing three centrally located D amino acids. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13946-13951.	3.3	37
21	Infinite pleated Â-sheet formed by the Â-hairpin Boc-Â-Phe-Â-Phe-D-Pro-Gly-Â-Phe-Â-Phe-OMe. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5160-5164.	3.3	71
22	Subunit interface mutation disrupting an aromatic cluster in Plasmodium falciparum triosephosphate isomerase: effect on dimer stability. Protein Engineering, Design and Selection, 2002, 15, 575-584.	1.0	22
23	Structure of the Plasmodium falciparum Triosephosphate Isomeraseâ^'Phosphoglycolate Complex in Two Crystal Forms:  Characterization of Catalytic Loop Open and Closed Conformations in the Ligand-Bound State,. Biochemistry, 2002, 41, 13178-13188.	1.2	40
24	Structural analysis of peptide helices containing centrally positioned lactic acid residues. Biopolymers, 2002, 64, 255-267.	1.2	14
25	Structures ofPlasmodium falciparumtriosephosphate isomerase complexed to substrate analogues: observation of the catalytic loop in the open conformation in the ligand-bound state. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1992-2000.	2.5	15
26	Synthetic peptides as inactivators of multimeric enzymes: inhibition of Plasmodium falciparum triosephosphate isomerase by interface peptides. FEBS Letters, 2001, 501, 19-23.	1.3	48
27	Design of Folded Peptides. Chemical Reviews, 2001, 101, 3131-3152.	23.0	641
28	Helical peptide models for protein glycation: proximity effects in catalysis of the Amadori rearrangement. Chemistry and Biology, 2001, 8, 611-625.	6.2	69
29	Spermidine as a potential biosynthetic precursor to the 1,5-diazabicyclo[4:3:0]nonene residue in the efrapeptins. Chemical Biology and Drug Design, 2001, 58, 375-379.	1.2	7
30	Designed ?-hairpin peptides with defined tight turn stereochemistry. Biopolymers, 2001, 58, 335-346.	1.2	48
31	Solvent-induced ?-hairpin to helix conformational transition in a designed peptide. Biopolymers, 2001, 58, 465-476.	1.2	33
32	Effects of hydrogen-bond deletion on peptide helices: Structural characterization of depsipeptides containing lactic acid. Biopolymers, 2001, 59, 276-289.	1.2	25
33	Molecular Carpentry: Piecing Together Helices and Hairpins in Designed Peptides. Chemistry - A European Journal, 2001, 7, 840-847.	1.7	16
34	Peptide hybrids containing \hat{A} - and \hat{A} -amino acids: Structure of a decapeptide \hat{A} -hairpin with two facing \hat{A} -phenylalanine residues. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3716-3719.	3.3	77
35	Comparison of helix-stabilizing effects of α,α-dialkyl glycines with linear and cycloalkyl side chains. Biopolymers, 2000, 53, 84-98.	1.2	52
36	Conformational choice at \hat{i} ±, \hat{i} ±-Di-n-propylglycine residues: Helical or fully extended structures?. Biopolymers, 2000, 54, 159-167.	1.2	7

#	Article	IF	Citations
37	Context-dependent conformation of diethylglycine residues in peptides. Chemical Biology and Drug Design, 2000, 55, 271-278.	1.2	4
38	Synthetic protein design: construction of a four-stranded \hat{l}^2 -sheet structure and evaluation of its integrity in methanol-water systems. Chemical Biology and Drug Design, 2000, 56, 307-317.	1.2	15
39	<i>De novo</i> protein design: Crystallographic characterization of a synthetic peptide containing independent helical and hairpin domains. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3034-3037.	3.3	66
40	Structural and thermodynamic consequences of introducing \hat{l}_{\pm} -aminoisobutyric acid in the S peptide of ribonuclease S. Protein Engineering, Design and Selection, 2000, 13, 697-702.	1.0	15
41	An Unusual C–H · · · O Hydrogen Bond Mediated Reversal of Polypeptide Chain Direction in a Synthetic Peptide Helix. Biochemical and Biophysical Research Communications, 2000, 273, 933-936.	1.0	21
42	Vibrational Circular Dichroism of \hat{l}^2 -Hairpin Peptides. Journal of the American Chemical Society, 2000, 122, 8228-8231.	6.6	77
43	Comparison of helix-stabilizing effects of $\hat{l}\pm,\hat{l}\pm$ -dialkyl glycines with linear and cycloalkyl side chains. Biopolymers, 2000, 53, 84.	1.2	1
44	De novo protein design: crystallographic characterization of a synthetic peptide containing independent helical and hairpin domains. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3034-7.	3.3	22
45	Unusual stability of a multiply nicked form of Plasmodium falciparum triosephosphate isomerase. Chemistry and Biology, 1999, 6, 625-637.	6.2	14
46	Stereochemical Control of Peptide Folding. Bioorganic and Medicinal Chemistry, 1999, 7, 105-117.	1.4	161
47	Fluoroalcohols as structure modifiers in peptides and proteins: hexafluoroacetone hydrate stabilizes a helical conformation of melittin at low pH. Chemical Biology and Drug Design, 1999, 54, 100-111.	1.2	24
48	A four stranded \hat{l}^2 -sheet structure in a designed, synthetic polypeptide. Chemical Communications, 1999, , 967-968.	2.2	25
49	Insertion of Methylene Units into the Turn Segment of Designed \hat{l}^2 -Hairpin Peptides. Journal of the American Chemical Society, 1999, 121, 5360-5363.	6.6	33
50	Unfolding ofPlasmodium falciparumTriosephosphate Isomerase in Urea and Guanidinium Chloride:Â Evidence for a Novel Disulfide Exchange Reaction in a Covalently Cross-Linked Mutantâ€. Biochemistry, 1999, 38, 423-431.	1,2	56
51	1-Anilino-8-naphthalene-sulfonate (ANS) Binding to Proteins Investigated by Electrospray Ionization Mass Spectrometry:  Correlation of Gas-Phase Dye Binding to Population of Molten Globule States in Solution. Journal of Physical Chemistry B, 1999, 103, 7068-7072.	1.2	14
52	Cavity-Creating Mutation at the Dimer Interface ofPlasmodium falciparumTriosephosphate Isomerase: Restoration of Stability by Disulfide Cross-Linking of Subunitsâ€. Biochemistry, 1999, 38, 478-486.	1.2	26
53	Disulfide engineering at the dimer interface of lactobacillus casei thymidylate synthase: Crystal structure of the T155C/E188C/C244T mutant. Protein Science, 1999, 8, 930-933.	3.1	17
54	Solid state and solution conformations of a helical peptide with a central gly-gly segment., 1998, 38, 515-526.		26

#	Article	IF	Citations
55	Omega amino acids in peptide design: incorporation into helices. , 1998, 39, 769-777.		40
56	Conformational interconversions in peptide \hat{l}^2 -turns: Discrimination between enantiomeric conformations by chiral perturbation. Biopolymers, 1998, 45, 191-202.	1.2	4
57	Folded conformations of antigenic peptides from riboflavin carrier protein in aqueous hexafluoroacetone. Protein Science, 1998, 7, 123-131.	3.1	6
58	A Designed Three Stranded \hat{l}^2 -Sheet Peptide as a Multiple \hat{l}^2 -Hairpin Model. Journal of the American Chemical Society, 1998, 120, 5812-5813.	6.6	87
59	Stereochemical punctuation marks in protein structures: glycine and proline containing helix stop signals 1 1Edited by J. Thornton. Journal of Molecular Biology, 1998, 275, 917-932.	2.0	117
60	Crystal structure of the channel-forming polypeptide antiamoebin in a membrane-mimetic environment. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5501-5504.	3.3	65
61	Peptide design: Crystal structure of a helical peptide module attached to a potentially nonhelical amino terminal segment. Biopolymers, 1998, 39, 75-83.	1.2	7
62	Beta-hairpins in proteins revisited: lessons for de novo design. Protein Engineering, Design and Selection, 1997, 10, 1131-1141.	1.0	171
63	Stereochemistry of linking segments in the design of helix–helix motifs in peptides. Crystallographic comparison of a glycyl–dipropylglycyl–glycyl segment in a tripeptide and a 14-residue peptide. Journal of the Chemical Society Perkin Transactions II, 1997, , 1659-1664.	0.9	11
64	Peptide design. Helix–helix motifs in synthetic sequences. Journal of the Chemical Society Perkin Transactions II, 1997, , 2087-2094.	0.9	21
65	ί‰-Amino Acids in Peptide Design. Crystal Structures and Solution Conformations of Peptide Helices Containing a \hat{I}^2 -Alanyl- \hat{I}^3 -Aminobutyryl Segment. Journal of the American Chemical Society, 1997, 119, 9087-9095.	6.6	120
66	Characterization of Helix Terminating Schellman Motifs in Peptides. Crystal Structure and Nuclear Overhauser Effect Analysis of a Synthetic Heptapeptide Helix. Journal of the American Chemical Society, 1997, 119, 9246-9251.	6.6	29
67	Triosephosphate isomerase from Plasmodium falciparum:. the crystal structure provides insights into antimalarial drug design. Structure, 1997, 5, 751-761.	1.6	135
68	Design of two-helix motifs in peptides: crystal structure of a system of linked helices of opposite chirality and a model helix–linker peptide. Folding & Design, 1997, 2, 203-210.	4.5	21
69	Stereochemical Analysis of Higher α,α-Dialkylglycine Containing Peptides. Characterization of Local Helical Conformations at Dipropylglycine Residues and Observation of a Novel Hydrated Multiple β-Turn Structure in Crystals of a Glycine Rich Peptide. Journal of the American Chemical Society, 1997, 119. 12048-12054.	6.6	65
70	Hexafluoroacetone hydrate as a structure modifier in proteins: Characterization of a molten globule state of hen eggâ€white lysozyme. Protein Science, 1997, 6, 1065-1073.	3.1	36
71	Polymyxin B nonapeptide: Conformations in water and in the lipopolysaccharide-bound state determined by two-dimensional NMR and molecular dynamics. Biopolymers, 1997, 41, 251-265.	1.2	63
72	Conformational variability of Gly-Gly segments in peptides: A comparison of the crystal structures of an acyclic pentapeptide and an octapeptide. Biopolymers, 1997, 41, 331-336.	1.2	6

#	Article	IF	Citations
73	"Teflon-coated peptides― Hexafluoroacetone trihydrate as a structure stabilizer for peptides. , 1997, 42, 125-128.		63
74	Amino acid-lanthanide interactionsâ€"2. The X-ray crystal structures of lanthanide and calcium complexes of 1-amino cyclohexane-1-carboxylic acid (Acc6), [Nd2(Acc6)6(H2O)6](ClO4)6·(H2O)6 (1), [Er2(Acc6)4(H2O)8](ClO4)6·(H2O)11 (2) and [Ca5(Acc6)12(H2O)6](ClO4)10·(H2O)4 (3). Polyhedron, 1997, 507-514.	1 ¹ 5,0	22
7 5	Heterogeneity and Stability of Helical Conformations in Peptides:Â Crystallographic and NMR Studies of a Model Heptapeptide. Journal of the American Chemical Society, 1996, 118, 9477-9483.	6.6	41
76	A designed beta-hairpin peptide in crystals Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 8189-8193.	3.3	172
77	Covalent tethering of the dimer interface annuls aggregation in thymidylate synthase. Protein Science, 1996, 5, 270-277.	3.1	10
78	Effects of End Group and Aggregation on Helix Conformation: Crystal Structure of Ac-(Aib-Val-Ala-Leu)2-Aib- OMe. Journal of Peptide Science, 1996, 2, 106-116.	0.8	3
79	NMR Analysis of a Conformational Transition in an Acyclic Peptide. Model System for Studying Helix Unfolding. The Journal of Physical Chemistry, 1996, 100, 19666-19671.	2.9	13
80	Conformation—activity correlations for chemotactic tripeptide analogs incorporating dialkyl residues with linear and cyclic alkyl sidechains at position 2. International Journal of Peptide and Protein Research, 1996, 48, 312-318.	0.1	18
81	A model for the interaction of trifluoroethanol with peptides and proteins. International Journal of Peptide and Protein Research, 1996, 48, 328-336.	0.1	167
82	Crystal structures of a nonapeptide helix containing α, αâ€diâ€ <i>n</i> à€butylglycine (Dbg), Bocâ€G1yâ€Dbgâ€Alaâ€Valâ€Alaâ€Leuâ€Aibâ€Valâ€Leuâ€OMe. International Journal of Peptide and Protein Rese 376-382.	e aoch , 199	16647,
83	Solid state and solution conformations of a helical peptide with a central gly-gly segment. , 1996, 38, 515.		17
84	Omega amino acids in peptide design: incorporation into helices., 1996, 39, 769.		13
85	?-Turn conformations in crystal structures of model peptides containing ?,?-Di-n-propylglycine and ?,?-Di-n-butylglycine. Biopolymers, 1995, 35, 1-9.	1.2	31
86	Contrasting solution conformations of peptides containing ?,?-dialkylated residues with linear and cyclic side chains. Biopolymers, 1995, 35, 11-20.	1.2	57
87	Peptide design. Structural evaluation of potential nonhelical segments attached to helical modules Journal of the American Chemical Society, 1995, 117, 9632-9637.	6.6	38
88	A Designed Î ² -Hairpin Peptide. Biochemical and Biophysical Research Communications, 1995, 216, 375-381.	1.0	84
89	Enhancing peptide antigenicity by helix stabilization. FEBS Letters, 1995, 361, 176-178.	1.3	16
90	Facile transition between 3 ₁₀ ―and αâ€helix: Structures of 8― 9― and 10â€residue peptides containing the â€(Leuâ€Aibâ€Ala) ₂ â€Pheâ€Aibâ€fragment. Protein Science, 1994, 3, 1547-1555.	3.1	61

#	Article	IF	CITATIONS
91	Coexistence of Folded and Extended Conformations of a Tripeptide Containing α,α-Di-n-propylglycine in Crystals. Biochemical and Biophysical Research Communications, 1994, 198, 424-430.	1.0	20
92	Incorporation of a Potentially Helix-Breaking D-Phe-Pro Sequence into the Center of a Right-Handed 16-Residue Peptide Helix. Biochemical and Biophysical Research Communications, 1994, 202, 241-245.	1.0	15
93	Nonstandard Amino Acids in Conformational Design of Peptides. Helical Structures in Crystals of 5-10 Residue Peptides Containing Dipropylglycine and Dibutylglycine. Journal of the American Chemical Society, 1994, 116, 10355-10361.	6.6	58
94	Thermal stabilization of thymidylate synthase by engineering two disulfide bridges across the dimer interface. Journal of Molecular Biology, 1994, 235, 89-94.	2.0	53
95	Peptideâ€lanthanide interactions. International Journal of Peptide and Protein Research, 1994, 43, 19-22.	0.1	4
96	Accommodation of aD-Phe residue into a right-handed 310-helix: Structure of Boc-D-Phe-(Aib)4-Gly-L-Leu-(Aib)2-Ome, an analogue of the amino terminal segment of antiamoebins and emerimicins. Biopolymers, 1993, 33, 401-407.	1.2	10
97	Unfolding of an ?-helix in peptide crystals by solvation: Conformational fragility in a heptapeptide. Biopolymers, 1993, 33, 827-837.	1.2	62
98	Stereochemical constraints in peptide design: Analysis of the influence of a disulfide bridge and an ?-aminoisobutyryl residue on the conformation of a hexapeptide. Biopolymers, 1993, 33, 865-871.	1.2	6
99	Termination of right handed helices in proteins by residues in left handed helical conformations. FEBS Letters, 1993, 321, 79-83.	1.3	45
100	Peptide mimics for structural features in proteins. International Journal of Peptide and Protein Research, 1993, 42, 401-410.	0.1	41
101	Zervamicins, a structurally characterised peptide model for membrane ion channels. Biochemical and Biophysical Research Communications, 1992, 186, 8-15.	1.0	27
102	The properties of ion channels formed by zervamicins. European Biophysics Journal, 1992, 21, 117-28.	1.2	62
103	Helix packing of leucine-rich peptides: A parallel leucine ladder in the structure of Boc-Aib-Leu-Aib-Aib-Leu-Leu-Aib-Leu-Aib-OMe. Proteins: Structure, Function and Bioinformatics, 1992, 12, 324-330.	1.5	15
104	The design and construction of synthetic protein mimics. Pure and Applied Chemistry, 1992, 64, 1061-1066.	0.9	29
105	Modular design of synthetic protein mimics. Crystal structure of two seven-residue helical peptide segments linked by .epsilonaminocaproic acid. Journal of the American Chemical Society, 1991, 113, 3952-3956.	6.6	64
106	Crystal state conformation of three model monomer units for the \hat{l}^2 -bend ribbon structure. Biopolymers, 1991, 31, 1669-1676.	1.2	18
107	Crystal structure of [Leu1]zervamicin, a membrane ion-channel peptide: implications for gating mechanisms Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5307-5311.	3.3	132
108	Stereochemistry of peptides containing 1â€aminocycloheptaneâ€1â€carboxylic acid (Ac ₇ c). International Journal of Peptide and Protein Research, 1991, 38, 511-518.	0.1	32

#	Article	IF	CITATIONS
109	Apolar peptide models for conformational heterogeneity, hydration, and packing of polypeptide helices: Crystal structure of hepta- and octapeptides containing α-aminoisobutyric acid. Proteins: Structure, Function and Bioinformatics, 1990, 7, 62-73.	1.5	64
110	Peptide design: Influence of a guest Aib-Pro segment on the stereochemistry of an Oligo-Val sequence?solution conformations and crystal structure of Boc-(Val)2-Aib-Pro-(Val)3-OMe. Biopolymers, 1990, 29, 1433-1442.	1.2	25
111	Synthetic peptide helices in crystals: Structure and antiparallel and skewed packing motifs for ?-helices in two isomeric decapeptides. Biopolymers, 1990, 30, 719-731.	1.2	14
112	Parallel zippers formed by alpha-helical peptide columns in crystals of Boc-Aib-Glu(OBzl)-Leu-Aib-Ala-Leu-Aib-Ala-Lys(Z)-Aib-OMe Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 7921-7925.	3.3	24
113	Structural characteristics of .alphahelical peptide molecules containing Aib residues. Biochemistry, 1990, 29, 6747-6756.	1.2	962
114	Modular design of synthetic protein mimics. Crystal structures, assembly, and hydration of two 15-and 16-residue apolar, leucyl-rich helical peptides. Journal of the American Chemical Society, 1990, 112, 9350-9356.	6.6	33
115	Parallel and antiparallel aggregation of αâ€helices. International Journal of Peptide and Protein Research, 1990, 35, 518-526.	0.1	21
116	Conformations of disulfide bridges in proteins. International Journal of Peptide and Protein Research, 1990, 36, 147-155.	0.1	164
117	Conformational analysis of cyclolinopeptide A, a cyclic nonapeptide: Nuclear overhauser effect and energy minimization studies. Biopolymers, 1989, 28, 573-588.	1.2	13
118	Conformations of dehydrophenylalanine containing peptides: nmr studies of an acyclic hexapeptide with two ?z-Phe residues. Biopolymers, 1989, 28, 763-771.	1,2	40
119	Stereochemical modeling of disulfide bridges. Criteria for introduction into proteins by site-directed mutagenesis. Protein Engineering, Design and Selection, 1989, 3, 95-103.	1.0	171
120	Comparison of the effect of five guest residues on the .betasheet conformation of host (L-val)n oligopeptides. Macromolecules, 1989, 22, 2939-2944.	2.2	150
121	Alpha-helix and mixed 3(10)/alpha-helix in cocrystallized conformers of Boc-Aib-Val-Aib-Aib-Val-Val-Val-Val-Aib-OMe Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 765-769.	3.3	70
122	Synthetic and conformational studies on dehydrophenylalanine containing model peptides. International Journal of Peptide and Protein Research, 1989, 33, 103-109.	0.1	35
123	Conformations and mitochondrial uncoupling activity of synthetic emerimicin fragments. Biopolymers, 1988, 27, 683-701.	1.2	8
124	Cyclic cystine peptides. Antiparallel .betasheet conformation for the 20-membered ring in Boc-Cys-Val-Aib-Ala-Leu-Cys-NHMe. Journal of the American Chemical Society, 1988, 110, 1958-1963.	6.6	62
125	Simultaneous observation of positive and negative nuclear overhauser effects in oligopeptides due to segmental motion. Biochemical and Biophysical Research Communications, 1988, 151, 153-157.	1.0	7
126	Aqueous channels within apolar peptide aggregates: solvated helix of the alpha-aminoisobutyric acid (Aib)-containing peptide Boc-(Aib-Ala-Leu)3-Aib-OMe.2H2O.CH3OH in crystals Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 299-303.	3.3	54

#	Article	IF	CITATIONS
127	Conformations of dehydrophenylalanine containing peptides Nuclear Overhauser effect study of two acyclic tetrapeptides. International Journal of Peptide and Protein Research, 1988, 31, 349-358.	0.1	25
128	Molecular conformation of alamethicin in dimethylsulfoxide solution. International Journal of Peptide and Protein Research, 1988, 32, 167-174.	0.1	21
129	Conformation of a 16-residue zervamicin IIA analog peptide containing three different structural features: 3(10)-helix, alpha-helix, and beta-bend ribbon Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 5087-5091.	3.3	134
130	Nuclear overhauser effects as probes of peptide structure. A diagnostic for left-handed helical conformations. Biochemical and Biophysical Research Communications, 1987, 149, 953-959.	1.0	6
131	Cystine peptides: The intramolecular antiparallel ?-sheet conformation of a 20-membered cyclic peptide disulfide. Biopolymers, 1987, 26, 873-891.	1.2	33
132	Spectroscopic studies on the interaction of bilirubin with symmetrical alkyl diamines. Journal of Biosciences, 1987, 11, 485-493.	0.5	5
133	Conformations of dehydrophenylalanine containing peptides International Journal of Peptide and Protein Research, 1987, 29, 126-133.	0.1	34
134	Cystine peptides. Spectroscopic studies on the conformations of a cyclic pentapeptide disulfide. International Journal of Peptide and Protein Research, 1987, 29, 381-391.	0.1	5
135	Cystine peptides International Journal of Peptide and Protein Research, 1987, 30, 474-480.	0.1	11
136	Stereochemically constrained peptides. Theoretical and experimental studies on the conformations of peptides containing 1-aminocyclohexanecarboxylic acid. Journal of the American Chemical Society, $1986, 108, 6363-6370$.	6.6	134
137	Membrane channel forming polypeptides. Molecular conformation and mitochondrial uncoupling activity of antiamoebin, an .alphaaminoisobutyric acid containing peptide. Biochemistry, 1986, 25, 7110-7117.	1.2	54
138	Peptide models of electrostatic interactions in proteins: NMR studies on two .betaturn tetrapeptides containing Asp-His and Asp-Lys salt bridges. Biochemistry, 1986, 25, 6004-6013.	1.2	26
139	Conformations of the amino aterminal tetrapeptide of emerimicins and antiamoebins in solution and in the solid state. International Journal of Biological Macromolecules, 1986, 8, 201-206.	3.6	7
140	Stereochemistry of peptides containing 1-aminocyclopentanecarboxylic acid (Acc5): Solution and solid-state conformations of Boc-Acc5-Acc5-NHMe. Biopolymers, 1986, 25, 1635-1644.	1.2	50
141	Stereochemistry of ?-aminoisobutyric acid peptides in solution: Conformations of decapeptides with a central triplet of contiguousL-amino acids. Biopolymers, 1986, 25, 2209-2223.	1.2	58
142	Solid state and solution conformation of Bocâ€Lâ€Metâ€Aibâ€Lâ€Pheâ€OMe. International Journal of Peptide an Protein Research, 1986, 27, 229-238.	od 0.1	22
143	Conformational effects on peptide aggregation in organic solvents: Spectroscopic studies of two chemotactic tripeptide analogs. Biopolymers, 1985, 24, 1131-1146.	1.2	36
144	A highly active chemotactic peptide analog incorporating the unusual residue 1-aminocyclohexanecarboxylic acid at position 2. Biochemical and Biophysical Research Communications, 1985, 128, 339-344.	1.0	47

#	Article	IF	Citations
145	Bilirubin binding to polypeptides and chiral amines. Induced circular dichroism and fluorescence studies. International Journal of Peptide and Protein Research, 1985, 25, 290-296.	0.1	14
146	Conformations of peptides containing 1â€aminocyclohexanecarboxylic acid (Acc ⁶). Crystal structures of two model peptides. International Journal of Peptide and Protein Research, 1985, 25, 628-639.	0.1	47
147	A helical peptide containing a majority of valyl residues. International Journal of Peptide and Protein Research, 1985, 26, 214-223.	0.1	17
148	PEPTIDE MODELS FOR THE BACTERIORHODOPSIN CHROMOPHORE. RETINYLIDENE‣YSINE SYSTEMS CONTAINING ASPARTIC ACID AND SERINE RESIDUES. Photochemistry and Photobiology, 1984, 39, 667-672.	1.3	6
149	Circular dichroism studies of ?-aminoisobutyric acid-containing peptides: Chain length and solvent effects in alternating Aib-L-Ala and Aib-L-Val sequences. Biopolymers, 1984, 23, 877-886.	1.2	39
150	13C NMR studies on trifluoroacetyl derivatives of 2-acetamido-2-deoxyhexoses. Magnetic Resonance in Chemistry, 1984, 22, 717-719.	0.7	3
151	Stabilization of \hat{l}^2 -turn conformations in Pro-X sequences by disulphide bridging. Synthesis and solution conformations of five cyclic cystine peptides. Tetrahedron, 1984, 40, 2577-2583.	1.0	49
152	The Stereochemistry of Peptides Containing \hat{l}_{\pm} -Aminoisobutyric Aci. Critical Reviews in Biochemistry, 1984, 16, 307-348.	7.5	332
153	Acyclic peptides as conformational models. International Journal of Peptide and Protein Research, 1984, 24, 135-140.	0.1	3
154	Peptide models for βâ€turns International Journal of Peptide and Protein Research, 1984, 23, 411-419.	0.1	74
155	Nuclear Overhauser effects and circular dichroism as probes of .betaturn conformations in acyclic and cyclic peptides with pro-X sequences. Journal of the American Chemical Society, 1983, 105, 7423-7428.	6.6	90
156	Alamethicin and related membrane channel forming polypeptides. Molecular and Cellular Biochemistry, 1983, 50, 47-64.	1.4	77
157	Solution conformations of penta and heptapeptides containing repetitive \hat{l} ±-aminoisobutyryl-l-alanyl and \hat{l} ± -aminoisobutyryl-l-valyl sequences. Tetrahedron, 1983, 39, 2725-2731.	1.0	41
158	Crystal structure of Boc-Ala-Aib-Ala-Aib-Aib-methyl ester, a pentapeptide fragment of the channel-forming ionophore suzukacillin. Biopolymers, 1983, 22, 1499-1505.	1.2	28
159	Stereochemistry of α-aminoisobutyric acid peptides in solution: Helical conformations of protected decapeptides with repeating Aib-L-Ala and Aib-L-Val sequences. Biopolymers, 1983, 22, 2133-2140.	1.2	51
160	Multiple conformational states of a Pro-Pro peptide. Solid-state and solution conformations of Boc-Aib-Pro-Pro-NHMe. Journal of the American Chemical Society, 1983, 105, 4065-4071.	6.6	25
161	Cyclic peptide disulfides. Solution and solid-state conformation of Boc-Cys-Pro-Aib-Cys-NHMe with a disulfide bridge from Cys to Cys, a disulfide-bridged peptide helix. Journal of the American Chemical Society, 1983, 105, 105-109.	6.6	85
162	The crystal structure of a 310helical decapeptide containing \hat{l}_{\pm} -aminoisobutyric acid. FEBS Letters, 1983, 155, 230-232.	1.3	41

#	Article	IF	Citations
163	A fluorescent peptide model for the thioredoxin active site. FEBS Letters, 1983, 159, 221-224.	1.3	9
164	A helix dipole model for alamethicin and related transmembrane channels. FEBS Letters, 1983, 157, 1-5.	1.3	65
165	Circular dichroism studies of helical oligopeptides: Can 310 and αâ€helical conformations be chiroptically distinguished?. International Journal of Peptide and Protein Research, 1983, 22, 464-468.	0.1	99
166	Stabilization of βâ€ŧurn conformations in enkephalins. International Journal of Peptide and Protein Research, 1983, 21, 381-388.	0.1	24
167	Helical conformations of three crystalline pentapeptide fragments of suzukacillin, a membrane channel forming polypeptide. Biochemical and Biophysical Research Communications, 1982, 106, 1240-1247.	1.0	10
168	The helical conformations of 14- and 16-residue fragments of suzukacillin, a membrane channel-forming polypeptide. BBA - Proteins and Proteomics, 1982, 706, 179-187.	2.1	12
169	Type II ?-turn conformation of pivaloyl-L-prolyl-?-aminoisobutyryl-N-methylamide: Theoretical, spectroscopic, and X-ray studies. Biopolymers, 1982, 21, 1261-1273.	1.2	43
170	Aggregation of apolar peptides in organic solvents. Concentration dependence of 1H-nmr parameters for peptide NH groups in 310 helical decapeptide fragment of suzukacillin. Biopolymers, 1982, 21, 1427-1433.	1.2	73
171	Crystal structures of diketopiperazines containing ?-aminoisobutyric acid: Cyclo(Aib-Aib) and cyclo(Aib-L-Ile). Biopolymers, 1982, 21, 1847-1855.	1.2	14
172	Molecular structure oft-butyloxycarbonyl-Leu-Aib-Pro-Val-Aib-methyl ester, a fragment of alamethicin and suzukacillin: A 310-helical pentapeptide. Biopolymers, 1982, 21, 2461-2472.	1.2	28
173	Conformations of synthetic alamethicin fragments. Evidence for 310 helical folding from 270-MHz hydrogen-1 nuclear magnetic resonance and circular dichroism studies. Biochemistry, 1981, 20, 2828-2835.	1.2	70
174	The 310 helical conformation of the amino terminal decapeptide of suzukacillin. 270 MHz hydrogen-1 NMR evidence for eight intramolecular hydrogen bonds. Journal of the American Chemical Society, 1981, 103, 5548-5552.	6.6	71
175	Membrane channel forming polypeptides. 270-MHz proton magnetic resonance studies of the aggregation of the 11-21 fragment of suzukacillin in organic solvents. Biochemistry, 1981, 20, 7278-7284.	1.2	36
176	Membrane channel forming polypeptides. 270-MHz hydrogen-1 nuclear magnetic resonance studies on the conformation of the 11-21 fragment of suzukacillin. Biochemistry, 1981, 20, 4866-4871.	1.2	32
177	Determination of beta-turn conformation by laser Raman spectroscopy. Biophysical Journal, 1981, 36, 509-517.	0.2	40
178	Molecular structure of a cyclic tetrapeptide disulfide. A novel 310 helical conformation with an S-S bridge. Biochemical and Biophysical Research Communications, 1981, 103, 1138-1144.	1.0	12
179	Hydrophobic channels in crystals of an $\hat{l}\pm$ -aminoisobutyric acid pentapeptide. Biochemical and Biophysical Research Communications, 1981, 103, 898-904.	1.0	30
180	X-Pro peptides: Solution and solid-state conformation of benzyloxycarbonyl-(Aib-Pro)2methyl ester, a type I ?-turn. Biopolymers, 1981, 20, 1123-1136.	1.2	43

#	Article	IF	CITATIONS
181	X-Pro peptides: Synthesis and solution conformation of benzyloxycarbonyl-(Aib-Pro)4methyl ester. Evidence for a novel helical structure. Biopolymers, 1981, 20, 1137-1145.	1.2	45
182	H N.M.R. STUDIES OF PROTECTED αâ€AMINOISOBUTYRIC ACID CONTAINING PEPTIDES. International Journal of Peptide and Protein Research, 1981, 18, 208-213.	0.1	12
183	Trifluoroacetic anhydride. A convenient NMR solvent for carbohydrates. 270 MHz1H NMR studies of 2-acetamido-2-deoxyhexoses. Magnetic Resonance in Chemistry, 1980, 13, 220-223.	0.7	7
184	The crystal structure of benzyloxycarbonyl-(α-aminoisobutyryl)2-L-alanyl methyl ester. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1980, 36, 107-110.	0.4	26
185	Cation translocating effects of alamethicin and its synthetic fragments in lipid membranes. FEBS Letters, 1980, 121, 365-368.	1.3	25
186	Infrared studies on the conformation of synthetic alamethicin fragments and model peptides containing .alphaaminoisobutyric acid. Biochemistry, 1980, 19, 425-431.	1.2	116
187	ROTATIONAL ISOMERISM ABOUT THE C _α O BOND IN PROLINE DERIVATIVES. International Journal of Peptide and Protein Research, 1980, 16, 291-298.	0.1	19
188	Crystal and molecular structure of benzyloxycarbonyl-?-aminoisobutyryl-L-prolyl methylamide: The observation of anX2-Pro3 Type III ?-Turn. Biopolymers, 1979, 18, 1635-1646.	1.2	70
189	An incipient 310 helix in Piv-Pro-Pro-Ala-NHMe as a model for peptide folding. Nature, 1979, 281, 83-84.	13.7	52
190	Metal binding to pyridoxal derivatives. An NMR study of the interaction of Eu(III) with pyridoxal phosphate and pyridoxamine phosphate. Journal of Biosciences, 1979, 1, 35-47.	0.5	2
191	Infrared spectroscopy as a probe for the development of secondary structure in the amino-terminal segment of alamethicin. FEBS Letters, 1979, 100, 244-248.	1.3	31
192	Enkephalin analogs. Introduction of stereochemical constraints, metal binding sites and fluorescent groups. FEBS Letters, 1979, 106, 271-274.	1.3	13
193	Stereochemically constrained linear peptides. Conformations of peptides containing .alphaaminoisobutyric acid. Journal of the American Chemical Society, 1979, 101, 16-20.	6.6	137
194	A stereochemically-constrained enkephalin analog. FEBS Letters, 1978, 96, 273-276.	1.3	17
195	The crystal and molecular structure of the amino terminal tetrapeptide of alamethicin. A novel 310 helical conformation. Biochemical and Biophysical Research Communications, 1977, 79, 292-298.	1.0	94
196	STABILISATION OF ENZYME STRUCTURES BY INHIBITORS:. International Journal of Peptide and Protein Research, 1977, 10, 9-16.	0.1	2
197	A nuclear magnetic resonance study of the interaction of serotonin with gangliosides. FEBS Letters, 1976, 63, 313-315.	1.3	16
198	Negative nuclear Overhuaser effects as probes of macromolecular structure. Journal of the American Chemical Society, 1972, 94, 4015-4017.	6.6	210

#	Article	IF	CITATIONS
199	Localization of tyrosine at the binding site of neurophysin II by negative nuclear Overhouser effects. Journal of the American Chemical Society, 1972, 94, 4017-4018.	6.6	118