Raphael Lamprecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10965534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of p21-activated kinase in maintaining the fear learning-induced modulation of excitation/inhibition ratio in lateral amygdala. Neurobiology of Learning and Memory, 2021, 179, 107385.	1.9	0
2	Actin Cytoskeleton Role in the Maintenance of Neuronal Morphology and Long-Term Memory. Cells, 2021, 10, 1795.	4.1	15
3	Learning-induced enduring changes in inhibitory synaptic transmission in lateral amygdala are mediated by p21-activated kinase. Journal of Neurophysiology, 2020, 123, 178-190.	1.8	2
4	EphB2 receptor forward signaling is needed for normal long-term memory formation in aged mice. Neurobiology of Aging, 2020, 86, 11-15.	3.1	2
5	Long-term memory is maintained by continuous activity of Arp2/3 in lateral amygdala. Neurobiology of Learning and Memory, 2020, 167, 107115.	1.9	3
6	The Role of Rac GTPase in Dendritic Spine Morphogenesis and Memory. Frontiers in Synaptic Neuroscience, 2020, 12, 12.	2.5	34
7	A Cellular Mechanism of Learning-Induced Enhancement of Synaptic Inhibition: PKC-Dependent Upregulation of KCC2 Activation. Scientific Reports, 2020, 10, 962.	3.3	6
8	Learning-induced modulation of the effect of endocannabinoids on inhibitory synaptic transmission. Journal of Neurophysiology, 2018, 119, 752-760.	1.8	6
9	Activation of EphB2 Forward Signaling Enhances Memory Consolidation. Cell Reports, 2018, 23, 2014-2025.	6.4	30
10	The Role of Actin Cytoskeleton in Dendritic Spines in the Maintenance of Long-Term Memory. Frontiers in Molecular Neuroscience, 2018, 11, 143.	2.9	86
11	Affecting long-term fear memory formation through optical control of Rac1 GTPase and PAK activity in lateral amygdala. Scientific Reports, 2017, 7, 13930.	3.3	19
12	The Role of Actin Cytoskeleton in Memory Formation in Amygdala. Frontiers in Molecular Neuroscience, 2016, 9, 23.	2.9	21
13	Calcium/calmodulinâ€dependent kinase II activity is required for maintaining learningâ€induced enhancement of αâ€aminoâ€3â€hydroxyâ€5â€methylâ€4â€isoxazolepropionic acid receptorâ€mediated synapti excitation. Journal of Neurochemistry, 2016, 136, 1168-1176.	c3.9	19
14	The Role of Ephs and Ephrins in Memory Formation. International Journal of Neuropsychopharmacology, 2016, 19, pyv106.	2.1	36
15	Arp2/3 and VASP Are Essential for Fear Memory Formation in Lateral Amygdala. ENeuro, 2016, 3, ENEURO.0302-16.2016.	1.9	19
16	Persistent CaMKII Activation Mediates Learning-Induced Long-Lasting Enhancement of Synaptic Inhibition. Journal of Neuroscience, 2015, 35, 128-139.	3.6	32
17	The roles of Eph receptors in contextual fear conditioning memory formation. Neurobiology of Learning and Memory, 2015, 124, 62-70.	1.9	25
18	The Membrane Proximal Region of AMPA Receptors in Lateral Amygdala is Essential for Fear Memory Formation. Neuropsychopharmacology, 2015, 40, 2727-2735.	5.4	9

RAPHAEL LAMPRECHT

#	Article	IF	CITATIONS
19	Fear conditioning leads to alteration in specific genes expression in cortical and thalamic neurons that project to the lateral amygdala. Journal of Neurochemistry, 2015, 132, 313-326.	3.9	17
20	Fear memory formation can affect a different memory: fear conditioning affects the extinction, but not retrieval, of conditioned taste aversion (CTA) memory. Frontiers in Behavioral Neuroscience, 2014, 8, 324.	2.0	3
21	The actin cytoskeleton in memory formation. Progress in Neurobiology, 2014, 117, 1-19.	5.7	64
22	ABL1 in thalamus is associated with safety but not fear learning. Frontiers in Systems Neuroscience, 2013, 7, 5.	2.5	9
23	Rho-associated kinase in the gustatory cortex is involved in conditioned taste aversion memory formation but not in memory retrieval or relearning. Neurobiology of Learning and Memory, 2012, 97, 1-6.	1.9	4
24	The Roles of the Actin Cytoskeleton in Fear Memory Formation. Frontiers in Behavioral Neuroscience, 2011, 5, 39.	2.0	20
25	Virally mediated gene manipulation in the adult CNS. Frontiers in Molecular Neuroscience, 2011, 4, 57.	2.9	16
26	Actin polymerization in lateral amygdala is essential for fear memory formation. Neurobiology of Learning and Memory, 2009, 91, 85-88.	1.9	49
27	Associative Pavlovian conditioning leads to an increase in spinophilinâ€immunoreactive dendritic spines in the lateral amygdala. European Journal of Neuroscience, 2006, 24, 876-884.	2.6	41
28	Fear conditioning drives profilin into amygdala dendritic spines. Nature Neuroscience, 2006, 9, 481-483.	14.8	93
29	Structural plasticity and memory. Nature Reviews Neuroscience, 2004, 5, 45-54.	10.2	860
30	Fear Memory Formation Involves p190 RhoGAP and ROCK Proteins through a GRB2-Mediated Complex. Neuron, 2002, 36, 727-738.	8.1	102
31	A-kinase anchoring proteins in amygdala are involved in auditory fear memory. Nature Neuroscience, 2002, 5, 837-838.	14.8	84
32	NMDA Receptor and the Tyrosine Phosphorylation of Its 2B Subunit in Taste Learning in the Rat Insular Cortex. Journal of Neuroscience, 1997, 17, 5129-5135.	3.6	217
33	cAMP Response Element-Binding Protein in the Amygdala Is Required for Long- but not Short-Term Conditioned Taste Aversion Memory. Journal of Neuroscience, 1997, 17, 8443-8450.	3.6	245
34	Differential modulation of brain immediate early genes by intraperitoneal LiCl. NeuroReport, 1995, 7, 289-293.	1.2	57