Raksha Raghunathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10964813/publications.pdf

Version: 2024-02-01

24 616 12 18 papers citations h-index g-index

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	An intelligence augmented, label-free molecular imaging method for tissue identification, cancer diagnosis, and cancer margin detection. Biomedical Optics Express, 2021, 12, 5559-5582.	2.9	2
2	Dose-response analysis of microvasculature changes in the murine fetal brain and the maternal extremities due to prenatal ethanol exposure. Journal of Biomedical Optics, 2020, 25, .	2.6	13
3	Optical coherence tomography angiography to evaluate murine fetal brain vasculature changes caused by prenatal exposure to nicotine. Biomedical Optics Express, 2020, 11, 3618.	2.9	5
4	Assessing the acute effects of prenatal synthetic cannabinoid exposure on murine fetal brain vasculature using optical coherence tomography. Journal of Biophotonics, 2019, 12, e201900050.	2.3	11
5	Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography. Birth Defects Research, 2019, 111, 991-998.	1.5	43
6	Can We Improve Vaginal Tissue Healing Using Customized Devices: 3D Printing and Biomechanical Changes in Vaginal Tissue. Gynecologic and Obstetric Investigation, 2019, 84, 145-153.	1.6	5
7	Evaluating the effects of maternal alcohol consumption on murine fetal brain vasculature using optical coherence tomography. Journal of Biophotonics, 2018, 11, e201700238.	2.3	19
8	In utero Optical Coherence Tomography to Evaluate Vasculature Changes in the Murine Embryonic Brain Due to Prenatal Alcohol and Nicotine exposure. , 2018, , .		0
9	Biomechanical Properties of Murine Embryos Using Optical Coherence Tomography and Brilloiun Microscopy., 2018,,.		0
10	Assessing the mechanical anisotropy and hysteresis while cycling IOP of porcine eyes before and after CXL by noncontact optical coherence elastography. , 2017, , .		0
11	Quantifying the effects of UV-A/riboflavin crosslinking on the elastic anisotropy and hysteresis of the porcine cornea by noncontact optical coherence elastography. , 2017, , .		0
12	Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, 87-94.	3.1	94
13	Assessing the effects of riboflavin/UV-A crosslinking on porcine corneal mechanical anisotropy with optical coherence elastography. Biomedical Optics Express, 2017, 8, 349.	2.9	37
14	Ultra-fast line-field low coherence holographic elastography using spatial phase shifting. Biomedical Optics Express, 2017, 8, 993.	2.9	22
15	Evaluating biomechanical properties of murine embryos using Brillouin microscopy and optical coherence tomography. Journal of Biomedical Optics, 2017, 22, 1.	2.6	46
16	Evaluating the Effects of Riboflavin/UV-A and Rose-Bengal/Green Light Cross-Linking of the Rabbit Cornea by Noncontact Optical Coherence Elastography. , 2016, 57, OCT112.		40
17	Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography. Biomedical Optics Express, 2016, 7, 2295.	2.9	23
18	Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model. Journal of Biomedical Optics, 2016, 21, 090504.	2.6	38

#	Article	IF	CITATION
19	Lorentz force optical coherence elastography. Journal of Biomedical Optics, 2016, 21, 1.	2.6	9
20	Optical coherence tomography for embryonic imaging: a review. Journal of Biomedical Optics, 2016, 21, 1.	2.6	53
21	Live dynamic OCT imaging of cardiac structure and function in mouse embryos with 43 Hz direct volumetric data acquisition. Proceedings of SPIE, 2016, , .	0.8	0
22	Analysis of the effect of the fluid-structure interface on elastic wave velocity in cornea-like structures by OCE and FEM. Laser Physics Letters, 2016, 13, 035602.	1.4	16
23	Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 15  MHz optical coherence tomography. Optics Letters, 2015, 40, 4791.	3.3	57
24	Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study. Physics in Medicine and Biology, 2015, 60, 3531-3547.	3.0	83