James L Young

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1096443/publications.pdf

Version: 2024-02-01

567281 642732 1,334 27 15 23 h-index citations g-index papers 29 29 29 2151 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Engineering Surface Architectures for Improved Durability in III–V Photocathodes. ACS Applied Materials & Discrete Amp; Interfaces, 2022, 14, 20385-20392.	8.0	6
2	Reduced synthesis temperatures of SrNbO2N perovskite films for photoelectrochemical fuel production. Journal of Materials Research, 2022, 37, 424-435.	2.6	1
3	Demonstration of photoreactor platform for on-sun unassisted photoelectrochemical hydrogen generation with tandem Ill–V photoelectrodes. Chem Catalysis, 2022, 2, 195-209.	6.1	14
4	Failure Modes of Platinized pn ⁺ -GaInP Photocathodes for Solar-Driven H ₂ Evolution. ACS Applied Materials & Samp; Interfaces, 2022, 14, 26622-26630.	8.0	4
5	Optimizing accuracy and efficacy in data-driven materials discovery for the solar production of hydrogen. Energy and Environmental Science, 2021, 14, 2335-2348.	30 . 8	23
6	Enhancing interfacial charge transfer in a WO ₃ /BiVO ₄ photoanode heterojunction through gallium and tungsten co-doping and a sulfur modified Bi ₂ O ₃ interfacial layer. Journal of Materials Chemistry A, 2021, 9, 16137-16149.	10.3	22
7	Understanding the Stability of Etched or Platinized p-GalnP Photocathodes for Solar-Driven H ₂ Evolution. ACS Applied Materials & Interfaces, 2021, 13, 57350-57361.	8.0	6
8	Highly efficient and durable III–V semiconductor-catalyst photocathodes ⟨i⟩via⟨ i⟩ a transparent protection layer. Sustainable Energy and Fuels, 2020, 4, 1437-1442.	4.9	9
9	Addressing the Stability Gap in Photoelectrochemistry: Molybdenum Disulfide Protective Catalysts for Tandem III–V Unassisted Solar Water Splitting. ACS Energy Letters, 2020, 5, 2631-2640.	17.4	48
10	Emergent Degradation Phenomena Demonstrated on Resilient, Flexible, and Scalable Integrated Photoelectrochemical Cells. Advanced Energy Materials, 2020, 10, 2002706.	19.5	8
11	Water Splitting: Emergent Degradation Phenomena Demonstrated on Resilient, Flexible, and Scalable Integrated Photoelectrochemical Cells (Adv. Energy Mater. 48/2020). Advanced Energy Materials, 2020, 10, 2070197.	19.5	O
12	Photoelectrochemical water splitting using strain-balanced multiple quantum well photovoltaic cells. Sustainable Energy and Fuels, 2019, 3, 2837-2844.	4.9	14
13	High performance III-V photoelectrodes for solar water splitting via synergistically tailored structure and stoichiometry. Nature Communications, 2019, 10, 3388.	12.8	42
14	Interfacial engineering of gallium indium phosphide photoelectrodes for hydrogen evolution with precious metal and non-precious metal based catalysts. Journal of Materials Chemistry A, 2019, 7, 16821-16832.	10.3	24
15	Protection of GalnP ₂ Photocathodes by Direct Photoelectrodeposition of MoS <i>_x</i> Thin Films. ACS Applied Materials & The Samp; Interfaces, 2019, 11, 25115-25122.	8.0	18
16	Unassisted Water Splitting Using a GaSb x P ($1\hat{a}^{"}$ x) Photoanode. Advanced Energy Materials, 2018, 8, 1703247.	19.5	17
17	Employing Overlayers To Improve the Performance of Cu ₂ BaSnS ₄ Thin Film based Photoelectrochemical Water Reduction Devices. Chemistry of Materials, 2017, 29, 916-920.	6.7	61
18	A graded catalytic–protective layer for an efficient and stable water-splitting photocathode. Nature Energy, 2017, 2, .	39.5	135

#	Article	IF	CITATIONS
19	Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nature Energy, $2017, 2, .$	39.5	115
20	Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nature Energy, 2017, 2, .	39.5	333
21	Covalent Surface Modification of Gallium Arsenide Photocathodes for Water Splitting in Highly Acidic Electrolyte. ChemSusChem, 2017, 10, 767-773.	6.8	27
22	Photo-Electrochemical Hydrogen Generation from Inverted Metamorphic Multijunction III-Vs., 2017,,.		0
23	Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes. Journal of Physical Chemistry Letters, 2016, 7, 2044-2049.	4.6	74
24	Water reduction by a p-GaInP2 photoelectrode stabilized by an amorphous TiO2 coating and a molecular cobalt catalyst. Nature Materials, 2016, 15, 456-460.	27.5	215
25	Semiconductor interfacial carrier dynamics via photoinduced electric fields. Science, 2015, 350, 1061-1065.	12.6	118
26	Photo-Electrochemical Hydrogen Production Systems using III-V Semiconductors: Challenges in Scaling-up from an Electrode to a Device., 0,,.		0
27	Photo-Electrochemical Hydrogen Production Systems using III-V Semiconductors: Challenges in Scaling-up from an Electrode to a Device. , 0, , .		0