
A S Wronski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10963802/publications.pdf Version: 2024-02-01

A S WOONSKI

#	Article	IF	CITATIONS
1	Liquid phase sintering, heat treatment and properties of ultrahigh carbon steels. Powder Metallurgy, 2011, 54, 592-598.	1.7	7
2	Mechanical properties distributions of PM manganese steels analysed by Gaussian and Weibull statistics. Powder Metallurgy, 2010, 53, 328-335.	1.7	8
3	Microstructure evolution in Fe–Mn–C during step sintering. Powder Metallurgy, 2010, 53, 244-250.	1.7	7
4	Microcrack nucleation, growth, coalescence and propagation in the fatigue failure of a powder metallurgy steel. Fatigue and Fracture of Engineering Materials and Structures, 2009, 32, 214-222.	3.4	27
5	Fracture micromechanics of static subcritical growth and coalescence of microcracks in sintered Fe–1·5Cr–0·2Mo–0·7C steel. Powder Metallurgy, 2006, 49, 363-368.	1.7	7
6	Tensile properties of Fe-3Mn-0·6/0·7C steels sinteredin semiclosed containers in dry hydrogen, nitrogen and mixtures thereof. Powder Metallurgy, 2003, 46, 165-170.	1.7	26
7	Potential of sintered high speed steels in antifretting applications. Powder Metallurgy, 1999, 42, 63-69.	1.7	7
8	Joining steels with electrodeposited nickel or copper barrier layers using Cu–P brazes. Science and Technology of Welding and Joining, 1998, 3, 312-316.	3.1	1
9	Design of new selfjigging temperature–time–gap width test specimen. Science and Technology of Welding and Joining, 1997, 2, 59-64.	3.1	0
10	Strength and toughness of sintered plus forged T1 high speed steel. Journal of Materials Science, 1997, 32, 1799-1807.	3.7	2
11	FRACTURE BEHAVIOUR OF A HIGHLY ALLOYED HIGH SPEED STEEL. Fatigue and Fracture of Engineering Materials and Structures, 1995, 18, 1-18.	3.4	13
12	A Technique for the Measurement of Adhesive Fracture Energy by the Blister Method. Journal of Adhesion, 1992, 37, 251-260.	3.0	3
13	Optimisation of Processing Parameters for Direct Vacuum Sintering of a T15 High Speed Steel. Powder Metallurgy, 1991, 34, 93-100.	1.7	10
14	The effect of hydrostatic pressure on transverse strength of glass and carbon fibre-epoxy composites. Journal of Materials Science, 1990, 25, 3162-3166.	3.7	12
15	Fracture mechanisms and mechanics of an 18-4-1 high speed steel. Journal of Materials Science, 1988, 23, 2213-2219.	3.7	8
16	Strength, toughness, and stiffness of wrought and directly sintered T6 high-speed steel at 20–600°C. Materials Science and Technology, 1987, 3, 260-267.	1.6	3
17	Comparison of Heat Treatment Response of Wrought and Sintered BT1 Grade High Speed Steel. Powder Metallurgy, 1985, 28, 79-84.	1.7	3
18	Effect of Carbon Additions on Sintering to Full Density of BT1 Grade High Speed Steel. Powder Metallurgy, 1985, 28, 1-6.	1.7	22

A S WRONSKI

#	Article	IF	CITATIONS
19	Strength and toughness of T42 high-speed steel. Metals Technology, 1984, 11, 181-188.	0.3	22
20	Cracking in M2 high speed steel. Metal Science, 1983, 17, 533-540.	0.7	23
21	Microcracking of high-speed-steel tools during cutting. Metals Technology, 1983, 10, 308-314.	0.3	11
22	Tempered carbides in high-speed steels. Journal of Materials Science Letters, 1982, 1, 318-320.	0.5	9
23	Compressive failure and kinking in uniaxially aligned glass-resin composite under superposed hydrostatic pressure. Journal of Materials Science, 1982, 17, 3656-3662.	3.7	68
24	Fracture of a plasticized epoxide under superposed hydrostatic pressure. Journal of Materials Science, 1982, 17, 2047-2055.	3.7	8
25	Kinking and tensile, compressive and interlaminar shear failure in carbon-fibre-reinforced plastic beams tested in flexure. Journal of Materials Science, 1981, 16, 439-450.	3.7	49
26	Comparison of Strength and Toughness of Wrought and Directly Sintered T6 High-Speed Steel. Powder Metallurgy, 1979, 22, 109-118.	1.7	29
27	The influence of pressurization-induced dislocations on the plastic deformation of LiF and NaCl monocrystals. Journal of Materials Science, 1975, 10, 427-435.	3.7	3
28	Generation of slip by pressurization of LiF single crystals containing cavities. Philosophical Magazine and Journal, 1974, 29, 1381-1398.	1.7	6
29	Relative Importance of Crack Propagation and Crack Nucleation in the Ductile Fracture of FeCo-2% V. Nature: Physical Science, 1972, 235, 113-114.	0.8	3
30	Influence of hydrostatic pressure on the microstructure of LiF single crystals containing cavities. Journal of Materials Science, 1972, 7, 1216-1217.	3.7	4
31	The failure of polycrystalline chromium between 657 and 706 K. Journal of Materials Science, 1972, 7, 1217-1221.	3.7	2
32	Influence of hydrostatic pressure of the flow stress in polycrystalline NaCl. Philosophical Magazine and Journal, 1971, 23, 731-736.	1.7	4
33	The Effects of Precompression and Pressurization on the Ductile–Brittle Transition of Polycrystalline Cast Chromium, Molybdenum, and Tungsten. Metal Science J, 1970, 4, 108-113.	0.9	13
34	The Propagation of Slip- and Spark-Induced Cracks in Polycrystalline Molybdenum. Metal Science J, 1970, 4, 228-233.	0.9	2
35	Generation of dislocations by hydrostatic pressure in NaCl monocrystals containing Na2SO4 particles. Journal of Materials Science, 1970, 5, 784-789.	3.7	8