Vieira, Mf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1096371/publications.pdf Version: 2024-02-01

VIEIDA ME

#	Article	IF	CITATIONS
1	Hydrogels produced from natural polymers: a review on its use and employment in water treatment. Brazilian Journal of Chemical Engineering, 2023, 40, 23-38.	0.7	10
2	Modification of natural zeolite clinoptilolite and ITS application in the adsorption of herbicides. Environmental Technology (United Kingdom), 2023, 44, 3949-3964.	1.2	0
3	A novel magnetic adsorbent from activated carbon fiber and iron oxide nanoparticles for 2,4-D removal from aqueous medium. Environmental Technology (United Kingdom), 2023, 44, 4219-4237.	1.2	3
4	A tubular ceramic membrane coated with TiO2-P25 for radial addition of H2O2 towards AMX removal from synthetic solutions and secondary urban wastewater. Environmental Science and Pollution Research, 2022, 29, 42120-42129.	2.7	4
5	Adsorption of Safranin-O dye by copper oxide nanoparticles synthesized from <i>Punica granatum</i> leaf extract. Environmental Technology (United Kingdom), 2022, 43, 3047-3063.	1.2	38
6	Layerâ€byâ€layer selfâ€assembly of polyethersulphone microfiltration membranes for dye removal and flux recovery improvement. Canadian Journal of Chemical Engineering, 2022, 100, 1920-1929.	0.9	2
7	lsotermas de adsorção de ivermectina em carvão ativado funcionalizado com grafeno. Engineering Sciences, 2022, 9, 101-109.	0.0	0
8	Deposition of graphene nanoparticles associated with tannic acid in microfiltration membrane for removal of food colouring. Environmental Technology (United Kingdom), 2021, 42, 351-357.	1.2	7
9	Modified <i>Moringa oleifera</i> Lam. Seed husks as low-cost biosorbent for atrazine removal. Environmental Technology (United Kingdom), 2021, 42, 1092-1103.	1.2	27
10	Investigation of <i>Moringa oleifera</i> seeds as effective and low-cost adsorbent to remove yellow dye tartrazine in fixed-bed column. Separation Science and Technology, 2020, 55, 13-25.	1.3	12
11	Mathematical modelling applied to the rate-limiting mass transfer step determination of a herbicide biosorption onto fixed-bed columns. Environmental Technology (United Kingdom), 2020, 41, 638-648.	1.2	10
12	Development of an activated carbon impregnation process with iron oxide nanoparticles by green synthesis for diclofenac adsorption. Environmental Science and Pollution Research, 2020, 27, 6088-6102.	2.7	9
13	Functionalization of membrane surface by layer-by-layer self-assembly method for dyes removal. Chemical Engineering Research and Design, 2020, 134, 140-148.	2.7	45
14	Application of magnetic coagulant based on fractionated protein of Moringa oleifera Lam. seeds for aqueous solutions treatment containing synthetic dyes. Environmental Science and Pollution Research, 2020, 27, 12192-12201.	2.7	28
15	Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal. Applied Surface Science, 2019, 486, 499-507.	3.1	77
16	Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: Mechanism, kinetic and equilibrium study. Journal of Cleaner Production, 2019, 219, 809-817.	4.6	107
17	Production of Sodium Bicarbonate from CO2 Reuse Processes: A Brief Review. International Journal of Chemical Reactor Engineering, 2019, .	0.6	8
18	Protein fractionation of <i>Moringa oleifera</i> Lam. seeds and functionalization with magnetic particles for the treatment of reactive black 5 solution. Canadian Journal of Chemical Engineering, 2019, 97, 2309-2317.	0.9	21

Vieira, Mf

#	Article	IF	CITATIONS
19	Green synthesis of copper oxide nanoparticles impregnated on activated carbon using <i>Moringa oleifera</i> leaves extract for the removal of nitrates from water. Canadian Journal of Chemical Engineering, 2018, 96, 2378-2386.	0.9	31
20	Lowâ€cost biosorbent based on <i>Moringa oleifera</i> residues for herbicide atrazine removal in a fixedâ€bed column. Canadian Journal of Chemical Engineering, 2018, 96, 1468-1478.	0.9	16
21	Activated carbon of Babassu coconut impregnated with copper nanoparticles by green synthesis for the removal of nitrate in aqueous solution. Environmental Technology (United Kingdom), 2018, 39, 1994-2003.	1.2	20
22	Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. Journal of Cleaner Production, 2018, 171, 85-97.	4.6	131
23	Covalent immobilization-stabilization of β-1,4-endoxylanases from Trichoderma reesei : Production of xylooligosaccharides. Process Biochemistry, 2018, 64, 170-176.	1.8	24
24	Water decontamination containing nitrate using biosorption with Moringa oleifera in dynamic mode. Environmental Science and Pollution Research, 2018, 25, 21544-21554.	2.7	5
25	Synthesis and Impregnation of Copper Oxide Nanoparticles on Activated Carbon through Green Synthesis for Water Pollutant Removal. Materials Research, 2018, 21, .	0.6	35
26	Environmentally friendly biosorbents (husks, pods and seeds) from <i>Moringa oleifera</i> for Pb(II) removal from contaminated water. Environmental Technology (United Kingdom), 2017, 38, 3145-3155.	1.2	36
27	Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment. Separation and Purification Technology, 2017, 180, 114-124.	3.9	126
28	Trihalomethanes minimization in drinking water by coagulation/flocculation/sedimentation with natural coagulant <i>Moringa oleifera</i> Lam and activated carbon filtration. Canadian Journal of Chemical Engineering, 2016, 94, 1277-1284.	0.9	12
29	Removal of excess fluoride from groundwater using natural coagulant <i>Moringa oleifera</i> Lam and microfiltration. Canadian Journal of Chemical Engineering, 2015, 93, 37-45.	0.9	18
30	Coagulation–flocculation process with ultrafiltered saline extract of Moringa oleifera for the treatment of surface water. Chemical Engineering Journal, 2015, 276, 166-173.	6.6	91
31	β-Glucosidase immobilized and stabilized on agarose matrix functionalized with distinct reactive groups. Journal of Molecular Catalysis B: Enzymatic, 2011, 69, 47-53.	1.8	35
32	Performance of a coagulation–ultrafiltration hybrid process for water supply treatment. Chemical Engineering Journal, 2011, 166, 483-489.	6.6	98
33	Immobilization–stabilization of glucoamylase: Chemical modification of the enzyme surface followed by covalent attachment on highly activated glyoxyl-agarose supports. Process Biochemistry, 2011, 46, 409-412.	1.8	35
34	Magnetic coagulant based on Moringa oleifera seeds extract and super paramagnetic nanoparticles: optimization of operational conditions and reuse evaluation. , 0, 106, 226-237.		28
35	The â€~chimie douce' process towards the modification of natural zeolites for removing drugs and pesticides from water. Journal of Chemical Technology and Biotechnology, 0, , .	1.6	3