Adrian Ioinovici

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10963439/publications.pdf

Version: 2024-02-01

687363 713466 2,255 46 13 21 citations h-index g-index papers 48 48 48 1359 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Improved Large DC Gain Converters With Low Voltage Stress on Switches Based on Coupled-Inductor and Voltage Multiplier for Renewable Energy Applications. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 2824-2836.	5.4	30
2	Generation of the Large DC Gain Step-Up Nonisolated Converters in Conjunction With Renewable Energy Sources Starting From a Proposed Geometric Structure. IEEE Transactions on Power Electronics, 2017, 32, 5323-5340.	7.9	88
3	Systematic generation of smart grid-purposed converters supplied by environmental-friendly sources of energy., 2017,,.		О
4	A family of high DC gain step-up non-isolated converters based on a new hybrid passive switching cell. , 2016, , .		2
5	Mixed switched-capacitor based high conversion ratio converter and generalization for renewable energy applications. , 2016, , .		2
6	A new ZVS-PWM current-fed full-bridge converter with full soft-switching load range. , 2016, , .		3
7	A new switched-capacitor based hybrid converter with large step-up DC gain and low voltage on its semiconductors. , 2016 , , .		7
8	A ZCS-PWM Voltage-Driven Three-Level Converter With a Secondary-Side Simple Soft-Switching Snubber. IEEE Transactions on Industrial Electronics, 2016, 63, 7542-7552.	7.9	11
9	Generation of a Family of Very High DC Gain Power Electronics Circuits Based on Switched-Capacitor-Inductor Cells Starting from a Simple Graph. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 2381-2392.	5.4	70
10	From a voltage divider to a voltage doubler for a large DC gain converter. , 2015, , .		2
11	A new ZCS PWM full-bridge converter of buck-type for applications with very high input voltage. , 2015, , .		5
12	A new switching cell for a family of large DC gain non-isolated converters. , 2015, , .		4
13	Switched-inductor-based non-isolated large conversion ratio, low components count DC-DC regulators., 2015,,.		15
14	High step-up, high power density boost converter integrated with switched capacitor-diode cell. , 2015, , .		4
15	Simple switched-capacitor-boost converter with large DC gain and low voltage stress on switches. , 2015, , .		10
16	Large DC gain nonisolated converter based on a new L-C-D step-up switching cell. , 2014, , .		13
17	LLC resonant converter operated at constant switching frequency and controlled by means of a switched-capacitor circuit. , 2013, , .		17
18	On Energy Efficiency of Switched-Capacitor Converters. IEEE Transactions on Power Electronics, 2013, 28, 862-876.	7.9	151

#	Article	IF	CITATIONS
19	Design and implementation of grid connection photovoltaic micro inverter., 2012,,.		5
20	A New Concept of High-Voltage DC–DC Conversion Using Asymmetric Voltage Distribution on the Switch Pairs and Hybrid ZVS–ZCS Scheme. IEEE Transactions on Power Electronics, 2012, 27, 2242-2259.	7.9	21
21	Ultra-Large Gain Step-Up Switched-Capacitor DC-DC Converter With Coupled Inductor for Alternative Sources of Energy. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 864-874.	5.4	177
22	Switched-capacitor converters with multiphase interleaving control., 2011,,.		9
23	A large DC-gain highly efficient hybrid switched-capacitor-boost converter for renewable energy systems. , 2011, , .		14
24	A novel control method for light-loaded multiphase boost converter with voltage multiplier used as a front-end of a grid-connected fuel-cell generation. , 2011 , , .		3
25	Switched-capacitor based step-up converter for alternative energy applications., 2011,,.		5
26	Analysis and optimized design of a new DC-DC converter with asymmetrical voltage distribution for stepping down 1500 V to 48 V. , 2011, , .		0
27	A Class of High-Input Low-Output Voltage Single-Step Converters with Low Voltage Stress on the Primary-Side Switches and High Output Current Capacity. IEEE Transactions on Power Electronics, 2011, 26, 1659-1672.	7.9	24
28	Analysis and optimized design of an efficient high-voltage converter with high output capacity. , 2010, , .		0
29	A ZCS Full-Bridge Converter Without Voltage Overstress on the Switches. IEEE Transactions on Power Electronics, 2010, 25, 686-698.	7.9	42
30	Interleaved switched-capacitor converters with adaptive control. , 2010, , .		12
31	A class of single-step high-voltage DC-DC converters with low voltage stress and high output current capacity. , 2009, , .		5
32	Switched-capacitor converter configuration with low EMI emission obtained by interleaving and its large-signal modeling. , 2009, , .		27
33	A ZCS Current-Fed Full-Bridge PWM Converter With Self-Adaptable Soft-Switching Snubber Energy. IEEE Transactions on Power Electronics, 2009, 24, 1977-1991.	7.9	75
34	Variable Structure Modeling and Design of Switched-Capacitor Converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56, 2132-2142.	5.4	54
35	Switched-Capacitor/Switched-Inductor Structures for Getting Transformerless Hybrid DC–DC PWM Converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, 55, 687-696.	5.4	1,110
36	Nonlinear control of switched-capacitor converter using sliding mode control approach., 2008,,.		12

#	Article	IF	CITATIONS
37	Comments on "Unified Analysis of Switched-Capacitor Resonant Converters― IEEE Transactions on Industrial Electronics, 2007, 54, 684-685.	7.9	51
38	A High-Voltage DC–DC Converter With Vin/3—Voltage Stress on the Primary Switches. IEEE Transactions on Power Electronics, 2007, 22, 2124-2137.	7.9	37
39	Application of the quantitative synthesis of feedback systems with uncertain non-linear plants. International Journal of Control, 1987, 45, 579-587.	1.9	4
40	Exact transient solution of the boost converter computed using the alternor equations. International Journal of Electronics, 1987, 63, 767-772.	1.4	7
41	Optimal design of a switching boost regulator in discontinuous conduction mode. International Journal of Electronics, 1987, 62, 199-208.	1.4	1
42	Design-oriented analysis of common switching DC to DC converters. International Journal of Electronics, 1987, 62, 923-933.	1.4	19
43	Design of a speed regulator electronic system for a DC motor fed from a semi-converter supplyâ€. International Journal of Electronics, 1986, 61, 355-364.	1.4	2
44	Quantitative synthesis of m $\tilde{A}-$ n feedback systems with uncertain plants. International Journal of Control, 1986, 44, 1603-1615.	1.9	1
45	Quantitative feedback theory for multiple-input-multiple output feedback systems with control input failuresâ€. International Journal of Control, 1986, 43, 1803-1821.	1.9	1
46	Budworm-forest system: application of quantitative feedback theoryâ€. International Journal of Systems Science, 1985, 16, 209-225.	5.5	9