
## Michael Menzinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10962427/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Chemical instability induced by a differential flow. Physical Review Letters, 1992, 69, 1193-1196.                                                                                                      | 7.8 | 200       |
| 2  | Self-organization induced by the differential flow of activator and inhibitor. Physical Review Letters, 1993, 70, 778-781.                                                                              | 7.8 | 156       |
| 3  | High Intensity, Low Energy Spread Ion Source for Chemical Accelerators. Review of Scientific Instruments, 1969, 40, 102-105.                                                                            | 1.3 | 144       |
| 4  | Turing instabilities in general systems. Journal of Mathematical Biology, 2000, 41, 493-512.                                                                                                            | 1.9 | 122       |
| 5  | Interaction of Turing and Hopf bifurcations in chemical systems. Physical Review A, 1992, 46, 6315-6322.                                                                                                | 2.5 | 82        |
| 6  | Flow-distributed oscillations: Stationary chemical waves in a reacting flow. Physical Review E, 1999, 60, R3471-R3474.                                                                                  | 2.1 | 72        |
| 7  | Non-Turing stationary patterns in flow-distributed oscillators with general diffusion and flow rates.<br>Physical Review E, 2000, 62, 113-119.                                                          | 2.1 | 55        |
| 8  | Segmentation and Somitogenesis Derived from Phase Dynamics in Growing Oscillatory Media. Journal of Theoretical Biology, 2000, 207, 473-493.                                                            | 1.7 | 54        |
| 9  | Parameter space analysis, pattern sensitivity and model comparison for Turing and stationary flow-distributed waves (FDS). Physica D: Nonlinear Phenomena, 2001, 160, 79-102.                           | 2.8 | 54        |
| 10 | Molecular beam chemiluminescence. VII. Enhancement of Ba+N2O→BaO*+N2O cross section through<br>N2O bending vibration: Evidence for electron transfer. Journal of Chemical Physics, 1975, 63, 4557-4559. | 3.0 | 45        |
| 11 | Chemical waves in open flows of active media: Their relevance to axial segmentation in biology.<br>Faraday Discussions, 2002, 120, 295-312.                                                             | 3.2 | 44        |
| 12 | Mercury Drop "Attacks―an Oxidant Crystal. Journal of Physical Chemistry B, 2000, 104, 3589-3593.                                                                                                        | 2.6 | 40        |
| 13 | Electronic Chemiluminescence in Gases. Advances in Chemical Physics, 2007, , 1-61.                                                                                                                      | 0.3 | 38        |
| 14 | Beam Studies of the Energy Dependence of Hotâ€Hydrogenâ€Atom Reactions with Cyclohexane. Journal of<br>Chemical Physics, 1969, 50, 2991-3004.                                                           | 3.0 | 37        |
| 15 | Steady-State Multiplicity and Superadiabatic Extinction Waves in the Oxidation of CO/H2 Mixtures over a Pt/Al2O3-Coated Monolith. Industrial & Engineering Chemistry Research, 2003, 42, 37-45.         | 3.7 | 32        |
| 16 | Slow passage through a supercritical Hopf bifurcation: Timeâ€delayed response in the<br>Belousov–Zhabotinsky reaction in a batch reactor. Journal of Chemical Physics, 1996, 105, 10905-10910.          | 3.0 | 31        |
| 17 | Control of chemical pattern formation by a clock-and-wavefront type mechanism. Biophysical Chemistry, 2004, 110, 231-238.                                                                               | 2.8 | 26        |
| 18 | Molecular beam chemiluminescence. V. Reactivities of NO (2Î1/2) and (2Î3/2) fine structure components<br>in the NO + O3 → NO*2 + O2 reaction. Journal of Chemical Physics, 1975, 62, 1987-1988.         | 3.0 | 25        |

MICHAEL MENZINGER

| #  | Article                                                                                                                                                                                                   | IF                | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 19 | Controlled pattern formation in the CDIMA reaction with a moving boundary of illumination.<br>Physical Chemistry Chemical Physics, 2002, 4, 1315-1319.                                                    | 2.8               | 25        |
| 20 | Nonlinear Dynamics of the BZ Reaction: A Simple Experiment that Illustrates Limit Cycles, Chaos,<br>Bifurcations, and Noise. Journal of Chemical Education, 1996, 73, 868.                                | 2.3               | 24        |
| 21 | Stirring Effects and Phase-Dependent Inhomogeneity in Chemical Oscillations:Â The<br>Belousovâ^'Zhabotinsky Reaction in a CSTR. Journal of Physical Chemistry A, 1997, 101, 2304-2309.                    | 2.5               | 24        |
| 22 | Differential flow instability in dynamical systems without an unstable (activator) subsystem. Physical<br>Review Letters, 1994, 72, 2017-2020.                                                            | 7.8               | 23        |
| 23 | Electronic energy partitioning in reactions occurring on more than one potential energy surface:<br>Metastable Mg(3P) atoms with halogen molecules. Journal of Chemical Physics, 1983, 78, 5612-5620.     | 3.0               | 21        |
| 24 | Experiments on Flow-Distributed Oscillations in the Belousovâ^'Zhabotinsky Reaction. Journal of<br>Physical Chemistry A, 2002, 106, 4897-4903.                                                            | 2.5               | 21        |
| 25 | An ab initio study of the reaction Be(3P) +H2(1Σg+) → BeH(2Σ+)+H(2S). Journal of Chemical Physics, 2<br>4592-4596.                                                                                        | 1983, 78,<br>3.0  | 19        |
| 26 | Pulsating wave propagation in reactive flows: Flow-distributed oscillations. Physical Review E, 2000, 61, 3334-3338.                                                                                      | 2.1               | 19        |
| 27 | Temperature excursions in packed bed reactors with an axial variation of catalyst activity. Catalysis<br>Today, 2001, 69, 137-146.                                                                        | 4.4               | 19        |
| 28 | On the dynamical content of excitation functions: Simple linearization procedures. Chemical Physics, 1977, 22, 273-280.                                                                                   | 1.9               | 18        |
| 29 | Hysteresis and Extinction Waves in Catalytic CO Oxidation Caused by Reactant Concentration<br>Perturbations in a Packed-Bed Reactor. Industrial & Engineering Chemistry Research, 2003, 42,<br>1662-1673. | 3.7               | 18        |
| 30 | General theory of nonlinear flow-distributed oscillations. Physical Review E, 2003, 68, 066122.                                                                                                           | 2.1               | 15        |
| 31 | Reply to "Comment on â€~Flow-distributed oscillations: Stationary chemical waves in a reacting flow' â<br>Physical Review E, 2000, 62, 2994-2995.                                                         | € <u>.</u><br>2.1 | 14        |
| 32 | Beam studies of the energy dependence of the reactions of tritium atoms with nâ€hexane, cyclopentane,<br>nâ€butane, and 1â€chlorobutane. Journal of Chemical Physics, 1973, 58, 1741-1752.                | 3.0               | 13        |
| 33 | Propagation of Excitation Pulses and Autocatalytic Fronts in Packed-Bed Reactors. Journal of Physical<br>Chemistry B, 2002, 106, 3751-3758.                                                               | 2.6               | 13        |
| 34 | Pattern formation by boundary forcing in convectively unstable, oscillatory media with and without<br>differential transport. Physical Review E, 2005, 72, 026210.                                        | 2.1               | 13        |
| 35 | Differential Flow Instability in Tubular Flow Reactor:  Its Convective Nature. The Journal of Physical<br>Chemistry, 1996, 100, 15810-15814.                                                              | 2.9               | 12        |
| 36 | A general mechanism for "inexact―phase differences inÂreaction–diffusion–advection systems. Physics<br>Letters, Section A: General, Atomic and Solid State Physics, 2002, 304, 149-156.                   | 2.1               | 12        |

MICHAEL MENZINGER

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Estimating spectral properties of the thermal instability in packed-bed reactors. Chemical Engineering<br>Science, 2008, 63, 1480-1489.                                                                            | 3.8 | 10        |
| 38 | The Differential Flow Instabilities. , 1995, , 365-397.                                                                                                                                                            |     | 10        |
| 39 | Temperature response to reactant concentration perturbations in a packedâ€bed reactor. Canadian<br>Journal of Chemical Engineering, 2001, 79, 823-827.                                                             | 1.7 | 8         |
| 40 | Energy dependence of the reactions of atomic tritium with 1 hlorobutane. Journal of Chemical Physics, 1974, 60, 2568-2569.                                                                                         | 3.0 | 7         |
| 41 | Control of activator-inhibitor systems by differential transport. Physics Letters, Section A: General,<br>Atomic and Solid State Physics, 1996, 216, 262-268.                                                      | 2.1 | 6         |
| 42 | Stirring Effect on Bistability in a CSTR. 1. Experiments and Simulations for the AsO33-/IO3-Reaction.<br>Journal of Physical Chemistry A, 1999, 103, 10859-10865.                                                  | 2.5 | 6         |
| 43 | Stabilization of stationary excitation pulses in an open flow without long-range inhibition. Physical Review E, 2002, 65, 046202.                                                                                  | 2.1 | 6         |
| 44 | Flow-distributed oscillation, flow-velocity modulation, and resonance. Physical Review E, 2005, 72, 027202.                                                                                                        | 2.1 | 6         |
| 45 | Recoil-tritium reactions in the solid phase: absolute yields and phase effects. The Journal of Physical Chemistry, 1968, 72, 1789-1792.                                                                            | 2.9 | 5         |
| 46 | Stirring Effect on Bistability in a CSTR. 2. Theoretical Analysis of the Coalescenceâ^'Redispersion Model for One-Variable Systems. Journal of Physical Chemistry A, 1999, 103, 10866-10873.                       | 2.5 | 5         |
| 47 | Harmonic resonant excitation of flow-distributed oscillation waves and Turing patterns driven at a growing boundary. Physical Review E, 2009, 80, 026209.                                                          | 2.1 | 5         |
| 48 | Selection of flow-distributed oscillation and Turing patterns by boundary forcing in a linearly growing, oscillating medium. Physical Review E, 2009, 80, 026208.                                                  | 2.1 | 5         |
| 49 | The Vibrational Spectrum of Tetramethyldioxetane. Spectroscopy Letters, 1983, 16, 945-951.                                                                                                                         | 1.0 | 4         |
| 50 | Dynamics of analogâ€ŧoâ€frequency transduction by excitable systems: Sensory receptors. Journal of<br>Chemical Physics, 1993, 98, 9155-9166.                                                                       | 3.0 | 4         |
| 51 | Amplification of Periodic Temperature Disturbances in a Packedâ€Bed Reactor: CO Oxidation over a<br>CuO/Al <sub>2</sub> O <sub>3</sub> Catalyst. Canadian Journal of Chemical Engineering, 2003, 81,<br>1215-1221. | 1.7 | 4         |
| 52 | Numerical Investigation of Resonance Behaviour of a Tubular Packedâ€Bed Reactor with Nonâ€Uniform<br>Activity. Canadian Journal of Chemical Engineering, 2004, 82, 387-391.                                        | 1.7 | 4         |
| 53 | Common dynamics of the differential-flow-induced chemical instability and the multimode instability<br>in a laser with a saturable absorber. Physical Review A, 1993, 48, 1683-1686.                               | 2.5 | 3         |
| 54 | Differential flow instability in the Ginzburg-Landau and Swift-Hohenberg approximations. Physica D:<br>Nonlinear Phenomena, 1996, 95, 306-318.                                                                     | 2.8 | 3         |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The parameter domain of convective instability of the adiabatic packedâ€bed reactor. Canadian Journal of Chemical Engineering, 2015, 93, 1975-1989.                                                                                            | 1.7 | 3         |
| 56 | Reply to Comments on "Stirring Effects and Phase-Dependent Inhomogeneity in Chemical Oscillations:<br>The Belousovâ^'Zhabotinsky Reaction in a CSTR― Journal of Physical Chemistry A, 1997, 101, 8966-8966.                                    | 2.5 | 2         |
| 57 | Inhomogeneities of CSTR on a Macroscale Due to Spatial Dependence of Micromixing Time:  The BZ<br>Reaction. Journal of Physical Chemistry A, 1998, 102, 188-191.                                                                               | 2.5 | 2         |
| 58 | Blocking and transmission of traveling flow-distributed-oscillation waves in an absolutely unstable flowing medium. Physical Review E, 2012, 86, 026208.                                                                                       | 2.1 | 1         |
| 59 | Isotope effect on the location of variational transition states: The hydrogen exchange reaction.<br>International Journal of Chemical Kinetics, 1986, 18, 1079-1086.                                                                           | 1.6 | 0         |
| 60 | Reply to the â€~Comment on "Controlled pattern formation in the CDIMA reaction with a moving<br>boundary of illuminationâ€â€™ by J. H. Merkin, Phys. Chem. Chem. Phys., 2003,5, 430. Physical Chemistry<br>Chemical Physics, 2003, 5, 431-431. | 2.8 | 0         |