Sergio A Navarrete

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10961320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Keystone Species Concept: Variation in Interaction Strength in a Rocky Intertidal Habitat. Ecological Monographs, 1994, 64, 249-286.	5.4	611
2	Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature, 2013, 501, 539-542.	27.8	445
3	More than a meal… integrating nonâ€feeding interactions into food webs. Ecology Letters, 2012, 15, 291-300.	6.4	320
4	Species coâ€occurrence networks: Can they reveal trophic and nonâ€trophic interactions in ecological communities?. Ecology, 2018, 99, 690-699.	3.2	242
5	QUANTIFYING VARIATION IN THE STRENGTHS OF SPECIES INTERACTIONS. Ecology, 1999, 80, 2206-2224.	3.2	220
6	Scales of benthic-pelagic coupling and the intensity of species interactions: From recruitment limitation to top-down control. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18046-18051.	7.1	215
7	Keystone Predation and Interaction Strength: Interactive Effects of Predators on Their Main Prey. Ecological Monographs, 1996, 66, 409-429.	5.4	213
8	Biodiversity enhances reef fish biomass and resistance to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6230-6235.	7.1	178
9	Network structure beyond food webs: mapping nonâ€ŧrophic and trophic interactions on Chilean rocky shores. Ecology, 2015, 96, 291-303.	3.2	168
10	Predator traits determine food-web architecture across ecosystems. Nature Ecology and Evolution, 2019, 3, 919-927.	7.8	157
11	How Structured Is the Entangled Bank? The Surprisingly Simple Organization of Multiplex Ecological Networks Leads to Increased Persistence and Resilience. PLoS Biology, 2016, 14, e1002527.	5.6	154
12	Mesoscale regulation comes from the bottom-up: intertidal interactions between consumers and upwelling. Ecology Letters, 2004, 7, 31-41.	6.4	146
13	Mollusk species diversity in the Southeastern Pacific: why are there more species towards the pole?. Ecography, 2003, 26, 139-144.	4.5	135
14	Diversity, dynamics and biogeography of Chilean benthic nearshore ecosystems: an overview and guidelines for conservation. Revista Chilena De Historia Natural, 2000, 73, 797.	1.2	130
15	Structure and co-occurrence patterns in microbial communities under acute environmental stress reveal ecological factors fostering resilience. Scientific Reports, 2018, 8, 5875.	3.3	123
16	Variable Predation: Effects of Whelks on a Midâ€Intertidal Successional Community. Ecological Monographs, 1996, 66, 301-321.	5.4	111
17	Avoiding offshore transport of competent larvae during upwelling events: The case of the gastropod <i>Concholepas concholepas</i> in Central Chile. Limnology and Oceanography, 2002, 47, 1248-1255.	3.1	109
18	INTERHEMISPHERIC COMPARISON OF RECRUITMENT TO INTERTIDAL COMMUNITIES: PATTERN PERSISTENCE AND SCALES OF VARIATION. Ecology, 2008, 89, 1308-1322.	3.2	92

SERGIO A NAVARRETE

#	Article	IF	CITATIONS
19	Recruitment of intertidal invertebrates in the southeast Pacific: Interannual variability and the 1997–1998 El Niño. Limnology and Oceanography, 2002, 47, 791-802.	3.1	83
20	Experimental determination of predation intensity in an intertidal predator guild: dominant versus subordinate prey. Oikos, 2003, 100, 251-262.	2.7	83
21	Latitudinal Discontinuity in Thermal Conditions along the Nearshore of Central-Northern Chile. PLoS ONE, 2014, 9, e110841.	2.5	82
22	Scaling of Food-Web Properties with Diversity and Complexity Across Ecosystems. Advances in Ecological Research, 2010, 42, 139-170.	2.7	78
23	Seasonal and spatial variation of nearshore hydrographic conditions in central Chile. Continental Shelf Research, 2004, 24, 279-292.	1.8	77
24	Thermal indices of upwelling effects on inner-shelf habitats. Progress in Oceanography, 2009, 83, 278-287.	3.2	62
25	Scales of Dispersal and the Biogeography of Marine Predatorâ€Prey Interactions. American Naturalist, 2008, 171, 405-417.	2.1	59
26	Resource partitioning between intertidal predatory crabs: interference and refuge utilization. Journal of Experimental Marine Biology and Ecology, 1990, 143, 101-129.	1.5	58
27	FEEDING BY LARVAE OF INTERTIDAL INVERTEBRATES: ASSESSING THEIR POSITION IN PELAGIC FOOD WEBS. Ecology, 2006, 87, 444-457.	3.2	58
28	SPECIES INTERACTIONS IN INTERTIDAL FOOD WEBS: PREY OR PREDATION REGULATION OF INTERMEDIATE PREDATORS?. Ecology, 2000, 81, 2264-2277.	3.2	56
29	Effects of Chiton granosus (Frembly, 1827) and other molluscan grazers on algal succession in wave exposed mid-intertidal rocky shores of central Chile. Journal of Experimental Marine Biology and Ecology, 2007, 349, 84-98.	1.5	48
30	Variable interaction strengths stabilize marine community pattern. Ecology Letters, 2006, 9, 526-536.	6.4	47
31	Deconstructing latitudinal species richness patterns in the ocean: does larval development hold the clue?. Ecology Letters, 2009, 12, 601-611.	6.4	47
32	Effects of Human Exclusion on Parasitism in Intertidal Food Webs of Central Chile. Conservation Biology, 2005, 19, 203-212.	4.7	45
33	INDIVIDUAL- AND POPULATION-LEVEL RESPONSES OF A KEYSTONE PREDATOR TO GEOGRAPHIC VARIATION IN PREY. Ecology, 2008, 89, 2005-2018.	3.2	45
34	Coexistence of competitors in marine metacommunities: environmental variability, edge effects, and the dispersal niche. Ecology, 2014, 95, 2289-2302.	3.2	44
35	Functional identity and functional structure change through succession in a rocky intertidal marine herbivore assemblage. Ecology, 2012, 93, 75-89.	3.2	41
36	Spatial and temporal variation in rocky intertidal community organization: Lessons from repeating field experiments. Journal of Experimental Marine Biology and Ecology, 1997, 214, 195-229.	1.5	39

SERGIO A NAVARRETE

#	Article	IF	CITATIONS
37	Internal tidal bore warm fronts and settlement of invertebrates in central Chile. Estuarine, Coastal and Shelf Science, 2004, 61, 603-612.	2.1	37
38	Geographic variation in diversity of wave exposed rocky intertidal communities along central Chile. Revista Chilena De Historia Natural, 2011, 84, 143-154.	1.2	35
39	River plume dynamic influences transport of barnacle larvae in the inner shelf off central Chile. Journal of the Marine Biological Association of the United Kingdom, 2006, 86, 1057-1065.	0.8	33
40	A simulation of the Chilean Coastal Current and associated topographic upwelling near ValparaÃso, Chile. Continental Shelf Research, 2008, 28, 2371-2381.	1.8	31
41	Ecological convergence in a rocky intertidal shore metacommunity despite high spatial variability in recruitment regimes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18528-18532.	7.1	30
42	Larval transport in the upwelling ecosystem of central Chile: The effects of vertical migration, developmental time and coastal topography on recruitment. Progress in Oceanography, 2018, 168, 82-99.	3.2	30
43	Spatial variability in prey preferences of the intertidal whelks Nucella canaliculata and Nucella emarginata. Journal of Experimental Marine Biology and Ecology, 1998, 222, 133-148.	1.5	29
44	Lottery Coexistence on Rocky Shores: Weak Niche Differentiation or Equal Competitors Engaged in Neutral Dynamics?. American Naturalist, 2014, 183, 342-362.	2.1	29
45	The oceanic concordance of phylogeography and biogeography: a case study in <i><scp>N</scp>otochthamalus</i> . Ecology and Evolution, 2016, 6, 4403-4420.	1.9	28
46	Spatial shifts in productivity of the coastal ocean over the past two decades induced by migration of the Pacific Anticyclone and Bakun's effect in the Humboldt Upwelling Ecosystem. Global and Planetary Change, 2020, 193, 103259.	3.5	28
47	Coexistence and intertidal zonation of chthamalid barnacles along central Chile: Interference competition or a lottery for space?. Journal of Experimental Marine Biology and Ecology, 2010, 392, 176-187.	1.5	26
48	Latitudinal patterns of species diversity on South American rocky shores: Local processes lead to contrasting trends in regional and local species diversity. Journal of Biogeography, 2020, 47, 1966-1979.	3.0	26
49	Interspecific Competition for Shelters in Territorial and Gregarious Intertidal Grazers: Consequences for Individual Behaviour. PLoS ONE, 2012, 7, e46205.	2.5	25
50	Movement patterns of the seastar Heliaster helianthus in central Chile: relationship with environmental conditions and prey availability. Marine Biology, 2010, 157, 647-661.	1.5	22
51	Biogeographical Boundaries, Functional Group Structure and Diversity of Rocky Shore Communities along the Argentinean Coast. PLoS ONE, 2012, 7, e49725.	2.5	22
52	Spatial differences in thermal structure and variability within a small bay: Interplay of diurnal winds and tides. Continental Shelf Research, 2014, 88, 72-80.	1.8	22
53	Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web. Scientific Reports, 2021, 11, 1765.	3.3	22
54	Temporal and spatial variation in settlement of the gastropod Concholepas concholepas in natural and artificial substrata. Journal of the Marine Biological Association of the United Kingdom, 2002, 82, 257-264.	0.8	20

#	Article	IF	CITATIONS
55	Refuge utilization and preferences between competing intertidal crab species. Journal of Experimental Marine Biology and Ecology, 2009, 374, 37-44.	1.5	20
56	Spatial patterns of barnacle settlement in central Chile: Persistence at daily to inter-annual scales relative to the spatial signature of physical variability. Journal of Experimental Marine Biology and Ecology, 2010, 392, 151-159.	1.5	19
57	Diel vertical migration and cross-shore distribution of barnacle and bivalve larvae in the central Chile inner-shelf. Journal of Experimental Marine Biology and Ecology, 2016, 485, 35-46.	1.5	19
58	Ontogenetic changes in habitat use and diet of the sea-star <i>Heliaster helianthus</i> on the coast of central Chile. Journal of the Marine Biological Association of the United Kingdom, 2010, 90, 537-546.	0.8	18
59	Interactive effects of grazing and environmental stress on macroalgal biomass in subtropical rocky shores: Modulation of bottom-up inputs by wave action. Journal of Experimental Marine Biology and Ecology, 2015, 463, 39-48.	1.5	18
60	An Open-System Approach to Complex Biological Networks. SIAM Journal on Applied Mathematics, 2019, 79, 619-640.	1.8	17
61	Multistability in an open recruitment food web model. Applied Mathematics and Computation, 2005, 163, 275-294.	2.2	14
62	Latitudinal variation in maternal investment traits of the kelp crab Taliepus dentatus along the coast of Chile. Marine Biology, 2018, 165, 1.	1.5	14
63	Abundance, composition and succession of sessile subtidal assemblages in high wave-energy environments of Central Chile: Temporal and depth variation. Journal of Experimental Marine Biology and Ecology, 2019, 512, 51-62.	1.5	14
64	Local and meso-scale patterns of recruitment and abundance of two intertidal crab species that compete for refuges. Marine Biology, 2008, 155, 223-232.	1.5	13
65	Asymmetric competitive effects during species range expansion: An experimental assessment of interaction strength between "equivalent―grazer species in their range overlap. Journal of Animal Ecology, 2019, 88, 277-289.	2.8	13
66	Geographical variation of multiplex ecological networks in marine intertidal communities. Ecology, 2020, 101, e03165.	3.2	12
67	Novel coâ€occurrence of functionally redundant consumers induced by range expansion alters community structure. Ecology, 2020, 101, e03150.	3.2	10
68	A comparison of temporal turnover of species from benthic cnidarian assemblages in tropical and subtropical harbours. Marine Biology Research, 2015, 11, 492-503.	0.7	9
69	Climate change in the coastal ocean: shifts in pelagic productivity and regionally diverging dynamics of coastal ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212772.	2.6	6
70	The potential of trait-based approaches to contribute to marine conservation. Marine Policy, 2015, 51, 148-150.	3.2	5
71	Beyond tides: surge-dominated submersion regimes on rocky shores of central Chile. Marine Biology, 2019, 166, 1.	1.5	3
72	Predation on competing mussel species: Patterns of prey consumption and its potential role in species coexistence. Journal of Experimental Marine Biology and Ecology, 2018, 504, 38-46.	1.5	2

#	Article	IF	CITATIONS
73	Environmental variability and larval supply to wild and cultured shellfish populations. Aquaculture, 2021, 548, 737639.	3.5	0