Jack Douglas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1096082/publications.pdf

Version: 2024-02-01

299 17,920 67 121
papers citations h-index g-index

302 302 302 13018
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nature Materials, 2009, 8, 354-359.	13.3	925
2	Interaction of Gold Nanoparticles with Common Human Blood Proteins. ACS Nano, 2010, 4, 365-379.	7.3	863
3	Stringlike Cooperative Motion in a Supercooled Liquid. Physical Review Letters, 1998, 80, 2338-2341.	2.9	846
4	Spinodal Dewetting of Thin Polymer Films. Physical Review Letters, 1998, 81, 1251-1254.	2.9	576
5	Thermal Degradation and Flammability Properties of Poly(propylene)/Carbon Nanotube Composites. Macromolecular Rapid Communications, 2002, 23, 761-765.	2.0	482
6	Characterization of branching architecture through "universal" ratios of polymer solution properties. Macromolecules, 1990, 23, 4168-4180.	2.2	304
7	What Do We Learn from the Local Geometry of Glass-Forming Liquids?. Physical Review Letters, 2002, 89, 125501.	2.9	251
8	The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation. Journal of Chemical Physics, 2013, 138, 12A541.	1.2	224
9	Model for the Viscosity of Particle Dispersions. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1999, 39, 561-642.	2.2	215
10	Origin of particle clustering in a simulated polymer nanocomposite and its impact on rheology. Journal of Chemical Physics, 2003, 119, 1777-1788.	1.2	213
11	"Gel-like―Mechanical Reinforcement in Polymer Nanocomposite Melts. Macromolecules, 2010, 43, 1003-1010.	2.2	209
12	Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films. Nature Communications, 2014, 5, 4163.	5.8	202
13	Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation. Journal of Chemical Physics, 2007, 126, 194903.	1.2	199
14	The effect of nanoparticle shape on polymer-nanocomposite rheology and tensile strength. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1882-1897.	2.4	198
15	Neutron Reflectivity Study of the Density Profile of a Model End-Grafted Polymer Brush: Influence of Solvent Quality. Physical Review Letters, 1994, 73, 3407-3410.	2.9	194
16	Dimensional Crossover in the Phase Separation Kinetics of Thin Polymer Blend Films. Physical Review Letters, 1996, 76, 4368-4371.	2.9	190
17	Phase-Separation-Induced Surface Patterns in Thin Polymer Blend Films. Macromolecules, 1998, 31, 857-862.	2.2	187
18	Modifying Fragility and Collective Motion in Polymer Melts with Nanoparticles. Physical Review Letters, 2011, 106, 115702.	2.9	187

#	Article	IF	CITATIONS
19	Influence of Confinement on the Fragility of Antiplasticized and Pure Polymer Films. Physical Review Letters, 2006, 97, 045502.	2.9	181
20	Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2966-2971.	3.3	171
21	Î ² -Relaxation governs protein stability in sugar-glass matrices. Soft Matter, 2012, 8, 2983.	1.2	170
22	Orientational Order in Block Copolymer Films Zone Annealed below the Orderâ^'Disorder Transition Temperature. Nano Letters, 2007, 7, 2789-2794.	4.5	169
23	Grain boundaries exhibit the dynamics of glass-forming liquids. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7735-7740.	3.3	164
24	Influence of counterion valency on the scattering properties of highly charged polyelectrolyte solutions. Journal of Chemical Physics, 2001, 114, 3299-3313.	1.2	161
25	The conundrum of gel formation by molecular nanofibers, wormlike micelles, and filamentous proteins: gelation without cross-links?. Soft Matter, 2012, 8, 8539.	1.2	159
26	Fragility and cooperative motion in a glass-forming polymer–nanoparticle composite. Soft Matter, 2013, 9, 241-254.	1.2	159
27	The Glass Transition Temperature of Polymer Melts. Journal of Physical Chemistry B, 2005, 109, 21285-21292.	1.2	157
28	A Simple Kinetic Model of Polymer Adsorption and Desorption. Science, 1993, 262, 2010-2012.	6.0	153
29	Semiempirical theory of relaxation: concentrated polymer solution dynamics. Macromolecules, 1991, 24, 3163-3177.	2.2	146
30	Hydrodynamic friction of arbitrarily shaped Brownian particles. Physical Review E, 1993, 47, R2983-R2986.	0.8	143
31	Phase separation of ultrathin polymer-blend films on patterned substrates. Physical Review E, 1998, 57, R6273-R6276.	0.8	141
32	Symmetry, equivalence, and molecular self-assembly. Physical Review E, 2006, 73, 031502.	0.8	141
33	Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects. Physical Review E, 2001, 64, 061401.	0.8	132
34	Renormalization and the two-parameter theory. Macromolecules, 1984, 17, 2344-2354.	2.2	124
35	Gelation in Physically Associating Polymer Solutions. Physical Review Letters, 2001, 87, .	2.9	120
36	String model for the dynamics of glass-forming liquids. Journal of Chemical Physics, 2014, 140, 204509.	1.2	120

#	Article	IF	Citations
37	Thermal and mass diffusion in a semidilute good solvent-polymer solution. Journal of Chemical Physics, 1999, 111, 2270-2282.	1.2	119
38	A unifying framework to quantify the effects of substrate interactions, stiffness, and roughness on the dynamics of thin supported polymer films. Journal of Chemical Physics, 2015, 142, 234907.	1.2	118
39	Tuning polymer melt fragility with antiplasticizer additives. Journal of Chemical Physics, 2007, 126, 234903.	1.2	115
40	Lattice model of living polymerization. I. Basic thermodynamic properties. Journal of Chemical Physics, 1999, 111, 7116-7130.	1.2	114
41	Local variation of fragility and glass transition temperature of ultra-thin supported polymer films. Journal of Chemical Physics, 2012, 137, 244901.	1.2	112
42	Generalized localization model of relaxation in glass-forming liquids. Soft Matter, 2012, 8, 11455.	1.2	106
43	Excitation of Surface Deformation Modes of a Phase-Separating Polymer Blend on a Patterned Substrate. Macromolecules, 1999, 32, 2356-2364.	2.2	99
44	Antiplasticization and the elastic properties of glass-forming polymer liquids. Soft Matter, 2010, 6, 292-304.	1.2	97
45	Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys. Journal of Chemical Physics, 2015, 142, 164506.	1.2	97
46	Bound Layers "Cloak―Nanoparticles in Strongly Interacting Polymer Nanocomposites. ACS Nano, 2016, 10, 10960-10965.	7.3	96
47	Application of the entropy theory of glass formation to poly(\hat{l} ±-olefins). Journal of Chemical Physics, 2009, 131, 114905.	1.2	93
48	Filler-induced composition waves in phase-separating polymer blends. Physical Review E, 1999, 60, 5812-5822.	0.8	89
49	Energy-Renormalization for Achieving Temperature Transferable Coarse-Graining of Polymer Dynamics. Macromolecules, 2017, 50, 8787-8796.	2.2	89
50	Influence of Ion Solvation on the Properties of Electrolyte Solutions. Journal of Physical Chemistry B, 2018, 122, 4029-4034.	1.2	88
51	Lattice model of equilibrium polymerization. IV. Influence of activation, chemical initiation, chain scission and fusion, and chain stiffness on polymerization and phase separation. Journal of Chemical Physics, 2003, 119, 12645-12666.	1.2	87
52	Combinatorial Measurements of Crystallization Growth Rate and Morphology in Thin Films of Isotactic Polystyrene. Langmuir, 2003, 19, 3935-3940.	1.6	85
53	Equilibrium polymerization in the Stockmayer fluid as a model of supermolecular self-organization. Physical Review E, 2005, 71, 031502.	0.8	85
54	Intrinsic Viscosity and the Polarizability of Particles Having a Wide Range of Shapes. Advances in Chemical Physics, 2007, , 85-153.	0.3	85

#	Article	IF	CITATIONS
55	Surface Morphology Diagram for Cylinder-Forming Block Copolymer Thin Films. ACS Nano, 2008, 2, 2331-2341.	7.3	82
56	Communication: When does a branched polymer become a particle?. Journal of Chemical Physics, 2015, 143, 111104.	1.2	80
57	Communication: Cosolvency and cononsolvency explained in terms of a Flory-Huggins type theory. Journal of Chemical Physics, 2015, 143, 131101.	1.2	79
58	Critical Examination of the Colloidal Particle Model of Globular Proteins. Biophysical Journal, 2015, 108, 724-737.	0.2	77
59	Plasticization and antiplasticization of polymer melts diluted by low molar mass species. Journal of Chemical Physics, 2010, 132, 084504.	1.2	76
60	Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?. Journal of Chemical Physics, 2006, 125, 144907.	1.2	75
61	Lattice model of living polymerization. III. Evidence for particle clustering from phase separation properties and "rounding―of the dynamical clustering transition. Journal of Chemical Physics, 2000, 113, 434-446.	1.2	74
62	Growth pulsations in symmetric dendritic crystallization in thin polymer blend films. Physical Review E, 2002, 65, 051606.	0.8	71
63	Molecular simulation of the swelling of polyelectrolyte gels by monovalent and divalent counterions. Journal of Chemical Physics, 2008, 129, 154902.	1.2	71
64	Glass formation and stability of polystyrene–fullerene nanocomposites. Journal of Molecular Liquids, 2010, 153, 79-87.	2.3	70
65	String-like cooperative motion in homogeneous melting. Journal of Chemical Physics, 2013, 138, 12A538.	1.2	69
66	Effect of residual interactions on polymer properties near the theta point. Journal of Chemical Physics, 1985, 83, 5293-5310.	1.2	67
67	Langmuir Adsorption Study of the Interaction of CdSe/ZnS Quantum Dots with Model Substrates: Influence of Substrate Surface Chemistry and pH. Langmuir, 2009, 25, 443-450.	1.6	67
68	Lattice model of equilibrium polymerization. VII. Understanding the role of "cooperativity―in self-assembly. Journal of Chemical Physics, 2008, 128, 224901.	1.2	65
69	Influence of Cohesive Energy on the Thermodynamic Properties of a Model Glass-Forming Polymer Melt. Macromolecules, 2016, 49, 8341-8354.	2.2	65
70	Dielectric study of the antiplasticization of trehalose by glycerol. Physical Review E, 2006, 74, 031501.	0.8	64
71	Transport Properties of Rodlike Particles. Macromolecules, 2008, 41, 5422-5432.	2.2	64
72	Incoherent Neutron Scattering and the Dynamics of Confined Polycarbonate Films. Physical Review Letters, 2002, 88, 037401.	2.9	62

#	Article	IF	CITATIONS
73	Correlation between Particle Motion and Voronoi-Cell-Shape Fluctuations during the Compaction of Granular Matter. Physical Review Letters, 2008, 101, 258001.	2.9	62
74	Localization model description of diffusion and structural relaxation in glass-forming Cu–Zr alloys. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016, 054048.	0.9	62
75	Modification of the Phase Stability of Polymer Blends by Diblock Copolymer Additives. Macromolecules, 1995, 28, 2276-2287.	2.2	61
76	Lattice model of living polymerization. II. Interplay between polymerization and phase stability. Journal of Chemical Physics, 2000, 112, 1002-1010.	1.2	61
77	Incoherent Neutron Scattering as a Probe of the Dynamics in Molecularly Thin Polymer Films. Macromolecules, 2003, 36, 373-379.	2.2	61
78	Development of minimal models of the elastic properties of flexible and stiff polymer networks with permanent and thermoreversible cross-links. Soft Matter, 2010, 6, 3548.	1.2	61
79	Dynamic entropy as a measure of caging and persistent particle motion in supercooled liquids. Physical Review E, 1999, 60, 5714-5724.	0.8	60
80	Transient Target Patterns in Phase Separating Filled Polymer Blends. Macromolecules, 1999, 32, 5917-5924.	2.2	60
81	Dielectric Spectroscopy Investigation of Relaxation in C ₆₀ â^'Polyisoprene Nanocomposites. Macromolecules, 2009, 42, 3201-3206.	2.2	60
82	Influence of Cohesive Energy on Relaxation in a Model Glass-Forming Polymer Melt. Macromolecules, 2016, 49, 8355-8370.	2.2	60
83	Critical properties and phase separation in lattice Boltzmann fluid mixtures. Physical Review E, 2001, 63, 031205.	0.8	58
84	Energy renormalization for coarse-graining polymers having different segmental structures. Science Advances, 2019, 5, eaav4683.	4.7	58
85	Coupling between Phase Separation and Surface Deformation Modes in Self-Organizing Polymer Blend Films. Physical Review Letters, 1998, 81, 3900-3903.	2.9	57
86	The fundamental role of flexibility on the strength of molecular binding. Soft Matter, 2012, 8, 6385.	1.2	56
87	Quantifying Changes in the High-Frequency Dynamics of Mixtures by Dielectric Spectroscopy. Journal of Physical Chemistry B, 2008, 112, 15980-15990.	1.2	55
88	Crowding Induced Self-Assembly and Enthalpy-Entropy Compensation. Physical Review Letters, 2009, 103, 135701.	2.9	55
89	A comparative study of thermodynamic, conformational, and structural properties of bottlebrush with star and ring polymer melts. Journal of Chemical Physics, 2018, 149, 044904.	1.2	55
90	Weak and Strong Gels and the Emergence of the Amorphous Solid State. Gels, 2018, 4, 19.	2.1	53

#	Article	IF	CITATIONS
91	Relaxation Behavior of Polymer Structures Fabricated by Nanoimprint Lithography. ACS Nano, 2007, 1 , 84-92.	7.3	52
92	Numerical path integration technique for the calculation of transport properties of proteins. Physical Review E, 2004, 69, 031918.	0.8	51
93	String-like collective motion in the $\langle i \rangle \hat{l} \pm \langle i \rangle$ - and $\langle i \rangle \hat{l}^2 \langle i \rangle$ -relaxation of a coarse-grained polymer melt. Journal of Chemical Physics, 2018, 148, 104508.	1.2	51
94	Why we need to look beyond the glass transition temperature to characterize the dynamics of thin supported polymer films. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5641-5646.	3.3	50
95	String-like collective atomic motion in the interfacial dynamics of nanoparticles. Soft Matter, 2010, 6, 5944.	1.2	49
96	The Glass Transition of a Single Macromolecule. Macromolecules, 2016, 49, 7597-7604.	2.2	49
97	Counter-ion distribution around flexible polyelectrolytes having different molecular architecture. Soft Matter, 2016, 12, 2932-2941.	1.2	49
98	Coarse-Grained Model of the Dynamics of Electrolyte Solutions. Journal of Physical Chemistry B, 2017, 121, 8195-8202.	1.2	49
99	Direct Immersion Annealing of Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing of Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing of Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing of Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing of Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing of Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing of Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing of Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Accordance Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Accordance Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Accordance Annealing On Thin Block Copolymer Films. ACS Applied Materials & Direct Immersion Accordance	4.0	48
100	How far is far from critical point in polymer blends? Lattice cluster theory computations for structured monomer, compressible systems. Journal of Chemical Physics, 1993, 99, 4804-4820.	1.2	47
101	Shear-Induced "Homogenization―of a Diluted Polymer Blend. Physical Review Letters, 1997, 78, 2664-2667.	2.9	47
102	Improved path integration method for estimating the intrinsic viscosity of arbitrarily shaped particles. Physical Review E, 2008, 78, 046712.	0.8	47
103	Mass dependence of the activation enthalpy and entropy of unentangled linear alkane chains. Journal of Chemical Physics, 2015, 143, 144905.	1.2	47
104	Energy Renormalization for Coarse-Graining the Dynamics of a Model Glass-Forming Liquid. Journal of Physical Chemistry B, 2018, 122, 2040-2045.	1.2	47
105	Self-avoiding-walk contacts and random-walk self-intersections in variable dimensionality. Physical Review E, 1995, 51, 1791-1817.	0.8	46
106	Competition between Hydrodynamic Screening ("Draining") and Excluded Volume Interactions in an Isolated Polymer Chain. Macromolecules, 1994, 27, 6088-6099.	2.2	45
107	Dielectric Characterization of Confined Water in Chiral Cellulose Nanocrystal Films. ACS Applied Materials & Confined Materials & Confi	4.0	45
108	Predictive relation for the \hat{l}_{\pm} -relaxation time of a coarse-grained polymer melt under steady shear. Science Advances, 2020, 6, eaaz0777.	4.7	45

#	Article	IF	Citations
109	Particle localization and hyperuniformity of polymerâ€grafted nanoparticle materials. Annalen Der Physik, 2017, 529, 1600342.	0.9	44
110	Complex Coacervation in Polyelectrolytes from a Coarse-Grained Model. Macromolecules, 2018, 51, 6717-6723.	2.2	44
111	Propagating waves of self-assembly in organosilane monolayers. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10324-10329.	3.3	42
112	Shape characteristics of equilibrium and non-equilibrium fractal clusters. Journal of Chemical Physics, 2013, 139, 044901.	1.2	42
113	Dynamic heterogeneity and collective motion in star polymer melts. Journal of Chemical Physics, 2020, 152, 054904.	1.2	41
114	Atomic motion during the migration of general [001] tilt grain boundaries in Ni. Acta Materialia, 2007, 55, 4527-4533.	3.8	40
115	Suppression of crystallization in a plastic crystal electrolyte (SN/LiClO4) by a polymeric additive (polyethylene oxide) for battery applications. Polymer, 2009, 50, 1288-1296.	1.8	40
116	The meaning of the "universal―WLF parameters of glass-forming polymer liquids. Journal of Chemical Physics, 2015, 142, 014905.	1.2	40
117	Prediction and validation of diffusion coefficients in a model drug delivery system using microsecond atomistic molecular dynamics simulation and vapour sorption analysis. Soft Matter, 2014, 10, 7480-7494.	1.2	39
118	Energy Renormalization Method for the Coarse-Graining of Polymer Viscoelasticity. Macromolecules, 2018, 51, 3818-3827.	2.2	39
119	Polyelectrolyte association and solvation. Journal of Chemical Physics, 2018, 149, 163305.	1.2	39
120	"Shift" in polymer blend phase-separation temperature in shear flow. Macromolecules, 1992, 25, 1468-1474.	2.2	38
121	Theoretical Issues Relating to Thermally Reversible Gelation by Supermolecular Fiber Formation. Langmuir, 2009, 25, 8386-8391.	1.6	38
122	Interplay of particle shape and suspension properties: a study of cube-like particles. Soft Matter, 2015, 11, 3360-3366.	1.2	38
123	Influence of higher valent ions on flexible polyelectrolyte stiffness and counter-ion distribution. Journal of Chemical Physics, 2016, 144, 164904.	1.2	38
124	Entropy-driven segregation of polymer-grafted nanoparticles under confinement. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2462-2467.	3.3	38
125	Polymer Glass Formation: Role of Activation Free Energy, Configurational Entropy, and Collective Motion. Macromolecules, 2021, 54, 3001-3033.	2.2	38
126	A dynamic measure of order in structural glasses. Computational Materials Science, 1995, 4, 292-308.	1.4	37

#	Article	IF	Citations
127	New patterns of polymer blend miscibility associated with monomer shape and size asymmetry. Journal of Chemical Physics, 2002, 116, 9983-9996.	1.2	37
128	ZENO: Software for calculating hydrodynamic, electrical, and shape properties of polymer and particle suspensions. Journal of Research of the National Institute of Standards and Technology, 2017, 122, 1-2.	0.4	37
129	Hidden Hyperuniformity in Soft Polymeric Materials. Physical Review Letters, 2018, 121, 258002.	2.9	37
130	Swelling and growth of polymers, membranes, and sponges. Physical Review E, 1996, 54, 2677-2689.	0.8	36
131	Molecular Dynamics Study of Glass Formation in Polymer Melts with Varying Chain Stiffness. Macromolecules, 2020, 53, 4796-4809.	2.2	36
132	Effect of residual interactions on polymer properties near the theta point. II. Higher moments and comparison with Monte Carlo calculations. Journal of Chemical Physics, 1987, 87, 3089-3098.	1.2	35
133	The influence of shear on the ordering temperature of a triblock copolymer melt. Journal of Chemical Physics, 1996, 104, 1589-1599.	1.2	35
134	Structural and dynamic heterogeneity in a telechelic polymer solution. Polymer, 2004, 45, 3961-3966.	1.8	35
135	Polymerization transitions in two-dimensional systems of dipolar spheres. Physical Review E, 2005, 72, 031301.	0.8	35
136	Multistep relaxation in equilibrium polymer solutions: A minimal model of relaxation in "complex― fluids. Journal of Chemical Physics, 2008, 129, 094901.	1.2	35
137	Advances in the generalized entropy theory of glass-formation in polymer melts. Journal of Chemical Physics, 2014, 141, 234903.	1.2	35
138	Self-assembly of polymer-grafted nanoparticles in solvent-free conditions. Soft Matter, 2016, 12, 9527-9537.	1.2	35
139	Communication: Counter-ion solvation and anomalous low-angle scattering in salt-free polyelectrolyte solutions. Journal of Chemical Physics, 2017, 147, 241103.	1.2	35
140	Communication: A comparison between the solution properties of knotted ring and star polymers. Journal of Chemical Physics, 2018, 149, 161101.	1.2	35
141	Influence of Pressure on Glass Formation in a Simulated Polymer Melt. Macromolecules, 2017, 50, 2585-2598.	2.2	34
142	The interfacial zone in thin polymer films and around nanoparticles in polymer nanocomposites. Journal of Chemical Physics, 2019, 151, 124705.	1.2	33
143	Dynamics of thin polymer films: Recent insights from incoherent neutron scattering. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3218-3234.	2.4	32
144	Morphology and Transport Properties of Two-Dimensional Sheet Polymers. Macromolecules, 2010, 43, 3438-3445.	2.2	32

#	Article	IF	CITATIONS
145	Effects of a "bound―substrate layer on the dynamics of supported polymer films. Journal of Chemical Physics, 2017, 147, 044901.	1.2	32
146	Collective Motion in the Interfacial and Interior Regions of Supported Polymer Films and Its Relation to Relaxation. Journal of Physical Chemistry B, 2019, 123, 5935-5941.	1.2	32
147	Fast dynamics in a model metallic glass-forming material. Journal of Chemical Physics, 2021, 154, 084505.	1.2	32
148	Glassy interfacial dynamics of Ni nanoparticles: part I Colored noise, dynamic heterogeneity and collective atomic motion. Soft Matter, 2013, 9, 1254-1265.	1.2	31
149	Polymer contraction below the .theta. point: a renormalization group description. Macromolecules, 1985, 18, 2445-2454.	2.2	30
150	Nanoimprint Lithography and the Role of Viscoelasticity in the Generation of Residual Stress in Model Polystyrene Patterns. Advanced Functional Materials, 2008, 18, 1854-1862.	7.8	30
151	String-Like Collective Atomic Motion in the Melting and Freezing of Nanoparticles. Journal of Physical Chemistry B, 2011, 115, 14068-14076.	1.2	30
152	Generalized entropy theory of glass-formation in fully flexible polymer melts. Journal of Chemical Physics, 2016, 145, 234509.	1.2	30
153	Universal nature of dynamic heterogeneity in glass-forming liquids: A comparative study of metallic and polymeric glass-forming liquids. Journal of Chemical Physics, 2019, 151, 184503.	1.2	30
154	Plasticization effect of C ₆₀ on the fast dynamics of polystyrene and related polymers: an incoherent neutron scattering study. Journal of Physics Condensed Matter, 2008, 20, 104209.	0.7	29
155	Growth of equilibrium polymers under non-equilibrium conditions. Journal of Physics Condensed Matter, 2008, 20, 155101.	0.7	29
156	Structure and Dynamics of a Graphene Melt. ACS Nano, 2018, 12, 5427-5435.	7. 3	29
157	Bottlebrush polymers in the melt and polyelectrolytes in solution share common structural features. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5168-5175.	3.3	29
158	Direct observation of stringlike collective motion in a two-dimensional driven granular fluid. Physical Review E, 2010, 81, 041301.	0.8	28
159	Molecular rigidity and enthalpy–entropy compensation in DNA melting. Soft Matter, 2017, 13, 8309-8330.	1.2	28
160	Superionic UO ₂ : A model anharmonic crystalline material. Journal of Chemical Physics, 2019, 150, 174506.	1.2	28
161	Influence of knot complexity on glass-formation in low molecular mass ring polymer melts. Journal of Chemical Physics, 2019, 150, 101103.	1.2	28
162	Equation of State and Entropy Theory Approach to Thermodynamic Scaling in Polymeric Glass-Forming Liquids. Macromolecules, 2021, 54, 3247-3269.	2.2	28

#	Article	IF	CITATIONS
163	Role of Cohesive Energy in Glass Formation of Polymers with and without Bending Constraints. Macromolecules, 2020, 53, 9678-9697.	2.2	28
164	Influence of polymer architectures on diffusion in unentangled polymer melts. Soft Matter, 2017, 13, 5778-5784.	1.2	27
165	Corrections to preaveraging approximation within the Kirkwood–Riseman model for flexible polymers: Calculations to second order in ε with both hydrodynamic and excluded volume interactions. Journal of Chemical Physics, 1986, 85, 3674-3687.	1.2	26
166	Lattice model of equilibrium polymerization. V. Scattering properties and the width of the critical regime for phase separation. Journal of Chemical Physics, 2006, 124, 144906.	1.2	26
167	Lattice model of equilibrium polymerization. VI. Measures of fluid "complexity―and search for generalized corresponding states. Journal of Chemical Physics, 2007, 127, 224901.	1.2	26
168	Persistent draining crossover in DNA and other semi-flexible polymers: Evidence from hydrodynamic models and extensive measurements on DNA solutions. Journal of Chemical Physics, 2015, 143, 124903.	1.2	26
169	Evolution of collective motion in a model glass-forming liquid during physical aging. Journal of Chemical Physics, 2013, 138, 12A528.	1.2	25
170	Glassy interfacial dynamics of Ni nanoparticles: Part II Discrete breathers as an explanation of two-level energy fluctuations. Soft Matter, 2013, 9, 1266-1280.	1.2	25
171	Two glass transitions in miscible polymer blends?. Journal of Chemical Physics, 2014, 140, 244905.	1.2	25
172	Thermally-induced transition of lamellae orientation in block-copolymer films on â€~neutral' nanoparticle-coated substrates. Soft Matter, 2015, 11, 5154-5167.	1,2	25
173	Influence of string-like cooperative atomic motion on surface diffusion in the (110) interfacial region of crystalline Ni. Journal of Chemical Physics, 2015, 142, 084704.	1.2	25
174	A wrinkling-based method for investigating glassy polymer film relaxation as a function of film thickness and temperature. Journal of Chemical Physics, 2017, 147, 154902.	1.2	25
175	What does the instantaneous normal mode spectrum tell us about dynamical heterogeneity in glass-forming fluids?. Journal of Chemical Physics, 2019, 151, 184904.	1.2	25
176	Polymers in two dimensions: renormalization group study using three-parameter model. Macromolecules, 1985, 18, 2455-2463.	2.2	24
177	Surface-interacting polymers: an integral-equation and fractional-calculus approach. Macromolecules, 1989, 22, 1786-1797.	2.2	24
178	Capillary instability in nanoimprinted polymer films. Soft Matter, 2009, 5, 2913.	1.2	24
179	Coupling of isotropic and directional interactions and its effect on phase separation and self-assembly. Journal of Chemical Physics, 2016, 144, 074901.	1.2	24
180	Understanding Activation Volume in Glass-Forming Polymer Melts via Generalized Entropy Theory. Macromolecules, 2020, 53, 7239-7252.	2.2	24

#	Article	IF	Citations
181	Dynamic heterogeneity, cooperative motion, and Johari–Goldstein \$\$eta \$\$-relaxation in a metallic glass-forming material exhibiting a fragile-to-strong transition. European Physical Journal E, 2021, 44, 56.	0.7	24
182	Dynamical clustering and a mechanism for raft-like structures in a model lipid membrane. Soft Matter, 2014, 10, 3036.	1.2	23
183	Intrinsic conductivity of carbon nanotubes and graphene sheets having a realistic geometry. Journal of Chemical Physics, 2015, 143, 204902.	1.2	23
184	Confronting the complexity of CNT materials. Soft Matter, 2015, 11, 4888-4898.	1.2	23
185	String-like collective motion and diffusion in the interfacial region of ice. Journal of Chemical Physics, 2017, 147, 194508.	1.2	23
186	Tuning the Relaxation of Nanopatterned Polymer Films with Polymer-Grafted Nanoparticles: Observation of Entropy–Enthalpy Compensation. Nano Letters, 2018, 18, 7441-7447.	4.5	23
187	The Influence of Polymer and Ion Solvation on the Conformational Properties of Flexible Polyelectrolytes. Gels, 2018, 4, 20.	2.1	23
188	Influence of Side-Chain Length and Relative Rigidities of Backbone and Side Chains on Glass Formation of Branched Polymers. Macromolecules, 2021, 54, 6327-6341.	2.2	23
189	Stringlike Cooperative Motion Explains the Influence of Pressure on Relaxation in a Model Glass-Forming Polymer Melt. ACS Macro Letters, 2016, 5, 1375-1380.	2.3	22
190	Dynamical heterogeneity in a vapor-deposited polymer glass. Journal of Chemical Physics, 2017, 146, 203310.	1.2	22
191	Knot Energy, Complexity, and Mobility of Knotted Polymers. Scientific Reports, 2017, 7, 13374.	1.6	22
192	Pattern-Directed Phase Separation of Polymer-Grafted Nanoparticles in a Homopolymer Matrix. Macromolecules, 2016, 49, 3965-3974.	2.2	21
193	Electromagnetic Resonances of Individual Single-Walled Carbon Nanotubes With Realistic Shapes: A Characteristic Modes Approach. IEEE Transactions on Antennas and Propagation, 2016, 64, 2743-2757.	3.1	21
194	Investigation of the Temperature Dependence of Activation Volume in Glass-Forming Polymer Melts under Variable Pressure Conditions. Macromolecules, 2020, 53, 6828-6841.	2.2	21
195	Influence of variable draining and excluded volume on hydrodynamic radius within Kirkwood–Riseman model: Dynamical renormalization group description to order ε2. Journal of Chemical Physics, 1987, 87, 1346-1354.	1.2	20
196	Reconciling computational and experimental trends in the temperature dependence of the interfacial mobility of polymer films. Journal of Chemical Physics, 2020, 152, 124703.	1.2	20
197	Fiber Network Formation in Semi-Flexible Polymer Solutions: An Exploratory Computational Study. Gels, 2018, 4, 27.	2.1	19
198	Block copolymers and polymer mixtures in dilute solution: General crossover analysis and comparison with Monte Carlo calculations. Journal of Chemical Physics, 1987, 86, 4280-4293.	1.2	18

#	Article	IF	Citations
199	Relation between Polymer Conformational Structure and Dynamics in Linear and Ring Polyethylene Blends. Macromolecular Theory and Simulations, 2017, 26, 1700045.	0.6	18
200	Valence, loop formation and universality in self-assembling patchy particles. Soft Matter, 2018, 14, 1622-1630.	1.2	18
201	Localization model description of diffusion and structural relaxation in superionic crystalline UO2. Journal of Chemical Physics, 2019, 151, 071101.	1.2	18
202	Incoherent neutron scattering and the dynamics of thin film photoresist polymers. Journal of Applied Physics, 2003, 93, 1978-1986.	1.1	17
203	An exactly solvable model of hierarchical self-assembly. Journal of Chemical Physics, 2009, 130, 224906.	1.2	17
204	Control of Phase Morphology of Binary Polymer Grafted Nanoparticle Blend Films <i>via</i> Direct Immersion Annealing. ACS Nano, 2021, 15, 12042-12056.	7.3	17
205	POLYMER SCIENCE APPLICATIONS OF PATH-INTEGRATION, INTEGRAL EQUATIONS, AND FRACTIONAL CALCULUS. , 2000, , 241-330.		17
206	Finite-size effects on surface segregation in polymer blend films above and below the critical point of phase separation. Europhysics Letters, 2004, 65, 671-677.	0.7	16
207	Dimensional reduction of duplex DNA under confinement to nanofluidic slits. Soft Matter, 2015, 11, 8273-8284.	1.2	16
208	Localization model description of the interfacial dynamics of crystalline Cu and Cu64Zr36 metallic glass films. Journal of Chemical Physics, 2020, 153, 124508.	1.2	16
209	Ultra-Fast Vertical Ordering of Lamellar Block Copolymer Films on Unmodified Substrates. Macromolecules, 2021, 54, 1564-1573.	2.2	16
210	A neutron scattering study of shear induced turbidity in polystyrene dissolved in dioctyl phthalate. Journal of Chemical Physics, 1994, 100, 3224-3232.	1.2	15
211	Some Applications of Fractional Calculus to Polymer Science. Advances in Chemical Physics, 2007, , 121-191.	0.3	15
212	Competition between self-assembly and surface adsorption. Journal of Chemical Physics, 2009, 130, 084903.	1.2	15
213	Influence of variable hydrodynamic interaction strength on the transport properties of coiled polymers. Physical Review E, 2010, 81, 021803.	0.8	15
214	Quantifying the Heterogeneous Dynamics of a Simulated Dipalmitoylphosphatidylcholine (DPPC) Membrane. Journal of Physical Chemistry B, 2016, 120, 5172-5182.	1.2	15
215	Universal interrelation between measures of particle and polymer size. Journal of Chemical Physics, 2017, 147, 014903.	1.2	15
216	Activation free energy gradient controls interfacial mobility gradient in thin polymer films. Journal of Chemical Physics, 2021, 155, 174901.	1,2	15

#	Article	IF	CITATIONS
217	Integral equation approach to condensed matter relaxation. Journal of Physics Condensed Matter, 1999, 11, A329-A340.	0.7	14
218	Mixtures of two self- and mutually-associating liquids: Phase behavior, second virial coefficients, and entropy-enthalpy compensation in the free energy of mixing. Journal of Chemical Physics, 2017, 147, 064909.	1.2	14
219	Electromagnetic Scattering From Individual Crumpled Graphene Flakes: A Characteristic Modes Approach. IEEE Transactions on Antennas and Propagation, 2017, 65, 6035-6047.	3.1	14
220	Influence of Branching on the Configurational and Dynamical Properties of Entangled Polymer Melts. Polymers, $2019,11,1045.$	2.0	14
221	Structure and Dynamics of Star Polymer Films from Coarse-Grained Molecular Simulations. Macromolecules, 2021, 54, 5344-5353.	2.2	14
222	Theory of competitive solvation of polymers by two solvents and entropy-enthalpy compensation in the solvation free energy upon dilution with the second solvent. Journal of Chemical Physics, 2015, 142, 214906.	1.2	13
223	Systematic investigation of synthetic polyelectrolyte bottlebrush solutions by neutron and dynamic light scattering, osmometry, and molecular dynamics simulation. Journal of Chemical Physics, 2020, 152, 194904.	1.2	13
224	The initiation of shear band formation in deformed metallic glasses from soft localized domains. Journal of Chemical Physics, 2021, 155, 204504.	1.2	13
225	Hypercubic lattice SAW exponents nu and gamma : 3.99 dimensions revisited. Journal of Physics A, 1993, 26, 1835-1845.	1.6	12
226	NMR Characterization of the Formation Kinetics and Structure of Di-O-Benzylidene Sorbitol Gels Self-Assembled in Organic Solvents. Langmuir, 2011, 27, 1745-1757.	1.6	12
227	Solvation of polymers as mutual association. II. Basic thermodynamic properties. Journal of Chemical Physics, 2013, 138, 164902.	1.2	12
228	Enhanced vertical ordering of block copolymer films by tuning molecular mass. RSC Advances, 2015, 5, 32307-32318.	1.7	12
229	Comparative Study of the Collective Dynamics of Proteins and Inorganic Nanoparticles. Scientific Reports, 2017, 7, 41671.	1.6	12
230	Solution properties of star polyelectrolytes having a moderate number of arms. Journal of Chemical Physics, 2017, 147, 044906.	1.2	12
231	Why Enhanced Subnanosecond Relaxations Are Important for Toughness in Polymer Glasses. Macromolecules, 2021, 54, 2518-2528.	2.2	12
232	Observation of General Entropy–Enthalpy Compensation Effect in the Relaxation of Wrinkled Polymer Nanocomposite Films. Nano Letters, 2021, 21, 1274-1281.	4.5	12
233	Enhanced Dielectric Strength and Capacitive Energy Density of Cyclic Polystyrene Films. ACS Polymers Au, 2022, 2, 324-332.	1.7	12
234	Observation of a characteristic length scale in the healing of glassy polymer interfaces. Soft Matter, 2010, 6, 2153.	1.2	11

#	Article	IF	CITATIONS
235	Lattice cluster theory of associating polymers. II. Enthalpy and entropy of self-assembly and Flory-Huggins interaction parameter i‡ for solutions of telechelic molecules. Journal of Chemical Physics, 2012, 136, 064903.	1.2	11
236	Effects of Chain Length on the Structure and Dynamics of Semidilute Nanoparticle–Polymer Composites. Macromolecules, 2021, 54, 3041-3051.	2.2	11
237	Ionic Liquid Enhanced Parallel Lamellar Ordering in Block Copolymer Films. Macromolecules, 2021, 54, 4531-4545.	2.2	11
238	Influence of network defects on the conformational structure of nanogel particles: From "closed compact―to "open fractal―nanogel particles. Journal of Chemical Physics, 2022, 156, 094903.	1.2	11
239	Effect of fluorosurfactant on capillary instabilities in nanoimprinted polymer patterns. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2591-2600.	2.4	10
240	Magnetic Iron Sulfide Nanoparticles for Potential Applications in Gas Sensing. MRS Advances, 2016, 1, 235-240.	0.5	10
241	Hierarchically Patterned Elastomeric and Thermoplastic Polymer Films through Nanoimprinting and Ultraviolet Light Exposure. ACS Omega, 2018, 3, 15426-15434.	1.6	10
242	Influence of Sodium Salts on the Swelling and Rheology of Hydrophobically Cross-linked Hydrogels Determined by QCM-D. Langmuir, 2019, 35, 16612-16623.	1.6	10
243	Comparative experimental and computational study of synthetic and natural bottlebrush polyelectrolyte solutions. Journal of Chemical Physics, 2021, 155, 074901.	1.2	10
244	Explaining the Sensitivity of Polymer Segmental Relaxation to Additive Size Based on the Localization Model. Physical Review Letters, 2021, 127, 277802.	2.9	10
245	Shear-induced changes in the order-disorder transition temperature and the morphology of a triblock copolymer. Journal of Macromolecular Science - Physics, 1996, 35, 489-503.	0.4	9
246	Is duplex DNA a swollen random coil?. Soft Matter, 2013, 9, 8914.	1.2	9
247	Phase behavior and second osmotic virial coefficient for competitive polymer solvation in mixed solvent solutions. Journal of Chemical Physics, 2015, 143, 194901.	1.2	9
248	Supramolecular Self-Assembly of a Model Hydrogelator: Characterization of Fiber Formation and Morphology. Gels, 2016, 2, 27.	2.1	9
249	Impact of Monovalent Counter-ions on the Conformation of Flexible Polyelectrolytes Having Different Molecular Architectures. MRS Advances, 2016, 1, 1841-1846.	0.5	9
250	Relation Between Solvent Quality and Phase Behavior of Ternary Mixtures of Polymers and Two Solvents that Exhibit Cononsolvency. Journal of Physical Chemistry B, 2016, 120, 5753-5758.	1.2	9
251	Nanoimprint Directed Assembly of Associating Polymer-Grafted Nanoparticles for Polymer Thin Films with Enhanced Stability. ACS Applied Polymer Materials, 2019, 1, 3242-3252.	2.0	9
252	Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal Antibodies. Polymers, 2021, 13, 601.	2.0	9

#	Article	IF	CITATIONS
253	Modeling short-chain branched polyethylenes in dilute solution under variable solvent quality conditions: Basic configurational properties. Polymer, 2021, 217, 123429.	1.8	9
254	Soft-Shear-Aligned Vertically Oriented Lamellar Block Copolymers for Template-Free Sub-10 nm Patterning and Hybrid Nanostructures. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12824-12835.	4.0	9
255	Concentration fluctuations in miscible polymer blends: Influence of temperature and chain rigidity. Journal of Chemical Physics, 2014, 140, 194901.	1.2	8
256	Influence of film thickness on the stability of free-standing Lennard-Jones fluid films. Journal of Chemical Physics, 2019, 150, 144705.	1.2	8
257	Rheological Properties of Cartilage Glycosaminoglycans and Proteoglycans. Macromolecules, 2021, 54, 2316-2324.	2.2	8
258	Structure and conformational properties of ideal nanogel particles in athermal solutions. Journal of Chemical Physics, 2021, 155, 134905.	1.2	8
259	Response to "Comment on  Generalized Localization Model of Relaxation in Glass-Forming Liquids'―by A. Ottochian et al Soft Matter, 2013, 9, 7892.	1.2	7
260	Solvation of polymers as mutual association. I. General theory. Journal of Chemical Physics, 2013, 138, 164901.	1.2	7
261	Electromagnetic Scattering From Multiple Single-Walled Carbon Nanotubes Having Tumbleweed Configurations. IEEE Transactions on Antennas and Propagation, 2017, 65, 3192-3202.	3.1	7
262	Reducing uncertainty in simulation estimates of the surface tension through a two-scale finite-size analysis: thicker is better. RSC Advances, 2019, 9, 35803-35812.	1.7	7
263	How Does Monomer Structure Affect the Interfacial Dynamics of Supported Ultrathin Polymer Films?. Macromolecules, 2020, 53, 9654-9664.	2.2	7
264	Impact of particle arrays on phase separation composition patterns. Journal of Chemical Physics, 2020, 152, 224902.	1.2	7
265	Influence of polymer topology on crystallization in thin films. Journal of Chemical Physics, 2020, 152, 044501.	1.2	7
266	Lattice theory of competitive binding: Influence of van der Waals interactions on molecular binding and adsorption to a solid substrate from binary liquid mixtures. Journal of Chemical Physics, 2018, 149, 044704.	1.2	6
267	Localization model description of the interfacial dynamics of crystalline Cu and \$\$hbox {Cu}_{64}hbox {Zr}_{36}\$\$ metallic glass nanoparticles. European Physical Journal E, 2021, 44, 33.	0.7	6
268	Solvent Processing and Ionic Liquid-Enabled Long-Range Vertical Ordering in Block Copolymer Films with Enhanced Film Stability. Macromolecules, 2021, 54, 8512-8525.	2.2	6
269	The osmotic virial formulation of the free energy of polymer mixing. Journal of Chemical Physics, 2015, 143, 104903.	1.2	5
270	Hydrodynamic radius fluctuations in model DNA–grafted nanoparticles. AIP Conference Proceedings, 2016, 1736, .	0.3	5

#	Article	IF	Citations
271	Hard Spheres with Purely Repulsive Interactions Have Positive Diffusion Interaction Parameter, k D. Biophysical Journal, 2017, 113, 753-754.	0.2	5
272	Competitive Solvation Effects in Polyelectrolyte Solutions. ACS Symposium Series, 2018, , 15-32.	0.5	5
273	Three-state heterogeneity in a model two-dimensional equilibrium liquid. Journal of Molecular Liquids, 2019, 293, 111466.	2.3	5
274	Late Stage Domain Coarsening Dynamics of Lamellar Block Copolymers. ACS Macro Letters, 2021, 10, 727-731.	2.3	5
275	Evolution of dendrimer conformational structure with generation number. AIP Conference Proceedings, 2016, , .	0.3	4
276	Quantifying structural dynamic heterogeneity in a dense two-dimensional equilibrium liquid. Journal of Chemical Physics, 2018, 149, 144504.	1.2	4
277	What does the Tg of thin polymer films really tell us?. AIP Conference Proceedings, 2018, , .	0.3	4
278	Reactive Molecular Dynamics Simulations of the Depolymerization of Polyethylene Using Graphene-Oxide-Supported Platinum Nanoparticles. Journal of Physical Chemistry A, 2022, 126, 3167-3173.	1.1	4
279	Lessons from simulation regarding the control of synthetic self-assembly. Journal of Materials Research, 2007, 22, 19-25.	1.2	3
280	Self-assembly fronts in collision: impinging ordering organosilane layers. Soft Matter, 2013, 9, 2493.	1.2	3
281	Conformational nature of DNA–grafted chains on spherical gold nanoparticles. AIP Conference Proceedings, 2016, , .	0.3	3
282	End-anchored polymers in good solvents from the single chain limit to high anchoring densities. Journal of Chemical Physics, 2016, 145, 174904.	1.2	3
283	Topological rigidification of flexible polymers in solution. AIP Conference Proceedings, 2018, , .	0.3	3
284	Lattice theory for binding of linear polymers to a solid substrate from polymer melts. II. Influence of van der Waals interactions and chain semiflexibility on molecular binding and adsorption. Journal of Chemical Physics, 2019, 151, 124709.	1.2	3
285	Lattice theory for binding of linear polymers to a solid substrate from polymer melts: I. Influence of chain connectivity on molecular binding and adsorption. Journal of Chemical Physics, 2019, 151, 124706.	1.2	3
286	Cooperative dynamics in a model DPPC membrane arise from membrane layer interactions. Emergent Materials, 2019, 2, 1-10.	3.2	3
287	Quantifying Fluorogenic Dye Hydration in an Epoxy Resin by Noncontact Microwave Dielectric Spectroscopy. Journal of Physical Chemistry B, 2020, 124, 2914-2919.	1.2	3
288	Enhanced resistance to decay of imprinted nanopatterns in thin films by bare nanoparticles compared to polymer-grafted nanoparticles. Nanoscale Advances, 2021, 3, 5348-5354.	2.2	3

#	Article	IF	CITATIONS
289	Evidence of Many-Body Interactions in the Virial Coefficients of Polyelectrolyte Gels. Gels, 2022, 8, 96.	2.1	3
290	Quantitative Model for Clusters of String-like Cooperative Motion in a Coarse-Grained Glass-Forming Polymer Melt. Materials Research Society Symposia Proceedings, 2014, 1622, 95-111.	0.1	2
291	Cartilage polymers: From viscoelastic solutions to weak gels. Polymer Engineering and Science, 0, , .	1.5	2
292	The Interfacial Layers Around Nanoparticle and Its Impact onÂStructural Relaxation and Glass Transition in Model Polymer Nanocomposites. Springer Series in Materials Science, 2021, , 101-131.	0.4	2
293	Electromagnetic scattering from multiple Carbon Nanotubes with experimentally determined shapes and distributions., 2015,,.		1
294	Tuning the Relaxation of Imprinted Polymer Films with Polymer-Grafted Nanoparticles. Microscopy and Microanalysis, 2019, 25, 2238-2239.	0.2	1
295	Thermal Degradation and Flammability Properties of Poly(propylene)/Carbon Nanotube Composites., 2002, 23, 761.		1
296	Combined Simulation and Experimental Study of Polyampholyte Solution Properties: Effects of Charge Ratio, Hydrophobic Groups, and Polymer Concentration. Macromolecules, 2022, 55, 6750-6761.	2.2	1
297	Electromagnetic scattering properties of individual Carbon Nanotubes with realistic three dimensional shapes., 2015, , .		O
298	Polarizability tensors of Carbon Nanotubes and Graphene Sheets with realistic shapes. , 2015, , .		0
299	Molecular dynamics study of water channels in natural and synthetic amyloid- \hat{l}^2 fibrils. Journal of Chemical Physics, 2021, 154, 235102.	1.2	O