
Eric D Lazartigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1096016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypertension Caused by Angiotensin II Infusion Involves Increased Superoxide Production in the Central Nervous System. Circulation Research, 2004, 95, 210-216.	2.0	407
2	Superoxide Mediates the Actions of Angiotensin II in the Central Nervous System. Circulation Research, 2002, 91, 1038-1045.	2.0	362
3	Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R373-R381.	0.9	357
4	Angiotensin onverting enzyme 2 in the brain: properties and future directions. Journal of Neurochemistry, 2008, 107, 1482-1494.	2.1	286
5	ACE2/ANG-(1–7)/Mas pathway in the brain: the axis of good. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R804-R817.	0.9	228
6	Nicotine and the renin-angiotensin system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R895-R906.	0.9	225
7	Angiotensin II Mediates Angiotensin Converting Enzyme Type 2 Internalization and Degradation Through an Angiotensin II Type I Receptor–Dependent Mechanism. Hypertension, 2014, 64, 1368-1375.	1.3	224
8	The sweeter side of ACE2: Physiological evidence for a role in diabetes. Molecular and Cellular Endocrinology, 2009, 302, 193-202.	1.6	183
9	Angiotensin l–Converting Enzyme Type 2 (<i>ACE2</i>) Gene Therapy Improves Glycemic Control in Diabetic Mice. Diabetes, 2010, 59, 2540-2548.	0.3	174
10	Brain-Selective Overexpression of Human Angiotensin-Converting Enzyme Type 2 Attenuates Neurogenic Hypertension. Circulation Research, 2010, 106, 373-382.	2.0	168
11	ACE2 overexpression in the paraventricular nucleus attenuates angiotensin II-induced hypertension. Cardiovascular Research, 2011, 92, 401-408.	1.8	165
12	Requirement for Rac1-Dependent NADPH Oxidase in the Cardiovascular and Dipsogenic Actions of Angiotensin II in the Brain. Circulation Research, 2004, 95, 532-539.	2.0	158
13	Brain Angiotensin-Converting Enzyme Type 2 Shedding Contributes to the Development of Neurogenic Hypertension. Circulation Research, 2013, 113, 1087-1096.	2.0	147
14	Clinical Relevance and Role of Neuronal AT ₁ Receptors in ADAM17-Mediated ACE2 Shedding in Neurogenic Hypertension. Circulation Research, 2017, 121, 43-55.	2.0	144
15	Angiotensin-Converting Enzyme 2 Overexpression in the Subfornical Organ Prevents the Angiotensin Il–Mediated Pressor and Drinking Responses and Is Associated With Angiotensin II Type 1 Receptor Downregulation. Circulation Research, 2008, 102, 729-736.	2.0	128
16	Angiotensin-Converting Enzyme 2: Central Regulator for Cardiovascular Function. Current Hypertension Reports, 2010, 12, 170-175.	1.5	123
17	Endocrine Significance of SARS-CoV-2's Reliance on ACE2. Endocrinology, 2020, 161, .	1.4	120
18	DOCA-Salt Hypertension: an Update. Current Hypertension Reports, 2017, 19, 32.	1.5	111

Eric D Lazartigues

#	Article	IF	CITATIONS
19	ACE2-Mediated Reduction of Oxidative Stress in the Central Nervous System Is Associated with Improvement of Autonomic Function. PLoS ONE, 2011, 6, e22682.	1.1	108
20	Angiotensin II Type 1 Receptor–Mediated Reduction of Angiotensin-Converting Enzyme 2 Activity in the Brain Impairs Baroreflex Function in Hypertensive Mice. Hypertension, 2009, 53, 210-216.	1.3	95
21	A Dynamic Variation of Pulmonary ACE2 Is Required to Modulate Neutrophilic Inflammation in Response to <i>Pseudomonas aeruginosa</i> Lung Infection in Mice. Journal of Immunology, 2019, 203, 3000-3012.	0.4	94
22	Expression of ACE2 in Human Neurons Supports the Neuro-Invasive Potential of COVID-19 Virus. Cellular and Molecular Neurobiology, 2022, 42, 305-309.	1.7	86
23	Neuronal over-expression of ACE2 protects brain from ischemia-induced damage. Neuropharmacology, 2014, 79, 550-558.	2.0	83
24	Major role for ACE-independent intrarenal ANG II formation in type II diabetes. American Journal of Physiology - Renal Physiology, 2010, 298, F37-F48.	1.3	81
25	Brain-Selective Overexpression of Angiotensin (AT 1) Receptors Causes Enhanced Cardiovascular Sensitivity in Transgenic Mice. Circulation Research, 2002, 90, 617-624.	2.0	76
26	Chronic Tempol Prevents Hypertension, Proteinuria, and Poor Feto-Placental Outcomes in BPH/5 Mouse Model of Preeclampsia. Hypertension, 2008, 51, 1058-1065.	1.3	75
27	ACE2 and ADAM17 Interaction Regulates the Activity of Presympathetic Neurons. Hypertension, 2019, 74, 1181-1191.	1.3	72
28	Brain-Targeted Angiotensin-Converting Enzyme 2 Overexpression Attenuates Neurogenic Hypertension by Inhibiting Cyclooxygenase-Mediated Inflammation. Hypertension, 2015, 65, 577-586.	1.3	66
29	DITPA stimulates arteriolar growth and modifies myocardial postinfarction remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1994-H2000.	1.5	64
30	Species-specific inhibitor sensitivity of angiotensin-converting enzyme 2 (ACE2) and its implication for ACE2 activity assays. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1293-R1299.	0.9	62
31	The transcription factor HNF1α induces expression of angiotensin-converting enzyme 2 (ACE2) in pancreatic islets from evolutionarily conserved promoter motifs. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1225-1235.	0.9	59
32	Activator of G Protein Signaling 3 Null Mice: I. Unexpected Alterations in Metabolic and Cardiovascular Function. Endocrinology, 2008, 149, 3842-3849.	1.4	58
33	Brain-Selective Overexpression of Angiotensin-Converting Enzyme 2 Attenuates Sympathetic Nerve Activity and Enhances Baroreflex Function in Chronic Heart Failure. Hypertension, 2011, 58, 1057-1065.	1.3	57
34	A Disintegrin and Metalloprotease 17 in the Cardiovascular and Central Nervous Systems. Frontiers in Physiology, 2016, 7, 469.	1.3	55
35	The Two fACEs of the Tissue Renin-Angiotensin Systems: Implication in Cardiovascular Diseases. Current Pharmaceutical Design, 2007, 13, 1231-1245.	0.9	53
36	ACE2 mouse models: a toolbox for cardiovascular and pulmonary research. Nature Communications, 2020, 11, 5165.	5.8	51

#	Article	IF	CITATIONS
37	Pancreatic angiotensin-converting enzyme 2 improves glycemia in angiotensin II-infused mice. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E874-E884.	1.8	49
38	Angiotensin Converting Enzyme 2/Angâ€(1–7)/Mas Axis Protects Brain from Ischemic Injury with a Tendency of Ageâ€dependence. CNS Neuroscience and Therapeutics, 2014, 20, 452-459.	1.9	49
39	Genetic Ablation of Angiotensinogen in the Subfornical Organ of the Brain Prevents the Central Angiotensinergic Pressor Response. Circulation Research, 2006, 99, 1125-1131.	2.0	48
40	Angiotensin converting enzyme 2: A new important player in the regulation of glycemia. IUBMB Life, 2013, 65, 731-738.	1.5	47
41	Effects of Chronic Nicotine Inhalation on Systemic and Pulmonary Blood Pressure and Right Ventricular Remodeling in Mice. Hypertension, 2020, 75, 1305-1314.	1.3	46
42	Dynamics of ADAM17-Mediated Shedding of ACE2 Applied to Pancreatic Islets of Male db/db Mice. Endocrinology, 2015, 156, 4411-4425.	1.4	45
43	ADAM17-Mediated Shedding of Inflammatory Cytokines in Hypertension. Frontiers in Pharmacology, 2020, 11, 1154.	1.6	44
44	Angiotensin onverting enzyme 2: a new target for neurogenic hypertension. Experimental Physiology, 2010, 95, 601-606.	0.9	42
45	Angiotensin-Converting Enzyme 2 Over-Expression in the Central Nervous System Reduces Angiotensin-II-Mediated Cardiac Hypertrophy. PLoS ONE, 2012, 7, e48910.	1.1	39
46	Rab1 GTPase and Dimerization in the Cell Surface Expression of Angiotensin II Type 2 Receptor. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 109-117.	1.3	38
47	MicroRNA-125a-5p alleviates the deleterious effects of ox-LDL on multiple functions of human brain microvessel endothelial cells. American Journal of Physiology - Cell Physiology, 2017, 312, C119-C130.	2.1	37
48	Glutamatergic neurons of the paraventricular nucleus are critical contributors to the development of neurogenic hypertension. Journal of Physiology, 2018, 596, 6235-6248.	1.3	37
49	SARS-CoV-2 infection of the pancreas promotes thrombofibrosis and is associated with new-onset diabetes. JCI Insight, 2021, 6, .	2.3	36
50	Renovascular Hypertension in Mice With Brain-Selective Overexpression of AT 1a Receptors Is Buffered by Increased Nitric Oxide Production in the Periphery. Circulation Research, 2004, 95, 523-531.	2.0	34
51	Protective Effects of PARP-1 Knockout on Dyslipidemia-Induced Autonomic and Vascular Dysfunction in ApoEâ^'/â^' Mice: Effects on eNOS and Oxidative Stress. PLoS ONE, 2009, 4, e7430.	1.1	34
52	Brain ACE2 overexpression reduces DOCA-salt hypertension independently of endoplasmic reticulum stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R370-R378.	0.9	33
53	α-Lipoic acid reduces neurogenic hypertension by blunting oxidative stress-mediated increase in ADAM17. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H926-H934.	1.5	32
54	Enhanced water and salt intake in transgenic mice with brain-restricted overexpression of angiotensin (AT ₁) receptors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1539-R1545.	0.9	29

#	Article	IF	CITATIONS
55	The Angiotensin Converting Enzyme 2/Ang-(1-7) Axis in the Heart. Circulation Research, 2008, 103, 1197-1199.	2.0	28
56	Pressor and bradycardic effects of tacrine and other acetylcholinesterase inhibitors in the rat. European Journal of Pharmacology, 1998, 361, 61-71.	1.7	27
57	Nicotine Downregulates the Compensatory Angiotensin-Converting Enzyme 2/Angiotensin Type 2 Receptor of the Renin–Angiotensin System. Annals of the American Thoracic Society, 2018, 15, S126-S127.	1.5	27
58	Intact renal afferent arteriolar autoregulatory responsiveness in <i>db</i> / <i>db</i> mice. American Journal of Physiology - Renal Physiology, 2008, 295, F1504-F1511.	1.3	26
59	Activation of ADAM17 (A Disintegrin and Metalloprotease 17) on Glutamatergic Neurons Selectively Promotes Sympathoexcitation. Hypertension, 2019, 73, 1266-1274.	1.3	24
60	Opposing roles of PARP-1 in MMP-9 and TIMP-2 expression and mast cell degranulation in dyslipidemic dilated cardiomyopathy. Cardiovascular Pathology, 2011, 20, e57-e68.	0.7	22
61	The compensatory renin–angiotensin system in the central regulation of arterial pressure: new avenues and new challenges. Therapeutic Advances in Cardiovascular Disease, 2015, 9, 201-208.	1.0	21
62	Excessive Glutamate Stimulation Impairs ACE2 Activity Through ADAM17-Mediated Shedding in Cultured Cortical Neurons. Cellular and Molecular Neurobiology, 2018, 38, 1235-1243.	1.7	21
63	Fluoxetineâ€induced pressor response in freely moving rats: a role for vasopressin and sympathetic tone. Fundamental and Clinical Pharmacology, 2000, 14, 443-451.	1.0	20
64	Forkhead Box Transcription Factors of the FOXA Class Are Required for Basal Transcription of Angiotensin-Converting Enzyme 2. Journal of the Endocrine Society, 2017, 1, 370-384.	0.1	19
65	Central administration of TRV027 improves baroreflex sensitivity and vascular reactivity in spontaneously hypertensive rats. Clinical Science, 2018, 132, 1513-1527.	1.8	19
66	High-fat diet-induced glucose dysregulation is independent of changes in islet ACE2 in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1223-R1233.	0.9	18
67	Angiotensin Type 1 Receptor-Dependent Internalization of SARS-CoV-2 by Angiotensin-Converting Enzyme 2. Hypertension, 2021, 77, e42-e43.	1.3	17
68	Kinin B1 Receptor Promotes Neurogenic Hypertension Through Activation of Centrally Mediated Mechanisms. Hypertension, 2017, 70, 1122-1131.	1.3	15
69	Perinatal Exposure to Western Diet Programs Autonomic Dysfunction in the Male Offspring. Cellular and Molecular Neurobiology, 2018, 38, 233-242.	1.7	15
70	Angiotensin II type 1 receptor mediates pulmonary hypertension and right ventricular remodeling induced by inhaled nicotine. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1526-H1534.	1.5	15
71	Pleiotropic functions of TNF-α determine distinct IKKβ-dependent hepatocellular fates in response to LPS. American Journal of Physiology - Renal Physiology, 2007, 292, C242-G252.	1.6	14
72	Inflammation and Neurogenic Hypertension. Circulation Research, 2010, 107, 166-167.	2.0	13

#	Article	IF	CITATIONS
73	Brain angiotensin converting enzyme-2 in central cardiovascular regulation. Clinical Science, 2020, 134, 2535-2547.	1.8	13
74	Microvesicles Derived from Inflammation-Challenged Endothelial Cells Modulate Vascular Smooth Muscle Cell Functions. Frontiers in Physiology, 2016, 7, 692.	1.3	12
75	A map and new directions for the (pro)renin receptor in the brain: focus on "A role of the (pro)renin receptor in neuronal cell differentiationâ€: American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R248-R249.	0.9	9
76	Epigenetic modifications of the renin–angiotensin system in cardiometabolic diseases. Clinical Science, 2021, 135, 127-142.	1.8	8
77	Characterization of the central muscarinic cholinoceptors involved in the cholinergic pressor response in anesthetized dogs. European Journal of Pharmacology, 1999, 379, 117-124.	1.7	7
78	Determining the Enzymatic Activity of Angiotensin-Converting Enzyme 2 (ACE2) in Brain Tissue and Cerebrospinal Fluid Using a Quenched Fluorescent Substrate. Methods in Molecular Biology, 2017, 1527, 117-126.	0.4	7
79	Next-Generation Tools to Study Autonomic Regulation In Vivo. Neuroscience Bulletin, 2019, 35, 113-123.	1.5	6
80	The Actin Bundling Protein Fascin-1 as an ACE2-Accessory Protein. Cellular and Molecular Neurobiology, 2022, 42, 255-263.	1.7	6
81	Voltage-gated potassium channel dysfunction in dorsal root ganglia contributes to the exaggerated exercise pressor reflex in rats with chronic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H461-H474.	1.5	5
82	Alpha7 nicotinic acetylcholine receptor mediates chronic nicotine inhalation-induced cardiopulmonary dysfunction. Clinical Science, 2022, 136, 973-987.	1.8	5
83	Central cardiovascular effects of tacrine in the conscious dog: a role for catecholamines and vasopressin release. European Journal of Pharmacology, 1998, 348, 191-198.	1.7	4
84	Central AT1 receptor blockade restores baroreflex sensitivity and lowers blood pressure in ACE2 knockout mice. FASEB Journal, 2007, 21, .	0.2	3
85	The PPARâ€Ĵ³ agonist Rosiglitazone increases angiotensinâ€converting enzyme 2 (ACE2) promoter activity in neurons. FASEB Journal, 2012, 26, 875.13.	0.2	3
86	Pancreatic ACE2 shedding is associated with impaired glycemia in high fat dietâ€fed mice FASEB Journal, 2013, 27, 1154.1.	0.2	3
87	Is Microglia the New Target for the Treatment of Resistant Hypertension?. Hypertension, 2015, 66, 265-266.	1.3	2
88	Sympathetic nerve activity and neuroâ€inflammation: Who is in the driver's seat?. Acta Physiologica, 2018, 222, e13011.	1.8	2
89	Neuronâ€ŧargeted expression of ACE2 in the central nervous system prevents angiotensinâ€Ilâ€mediated hypertension. FASEB Journal, 2008, 22, 741.1.	0.2	2
90	ACE2 gene therapy decreases fibrosis in the pancreas of high fat dietâ€fed mice. FASEB Journal, 2013, 27, 1154.7.	0.2	2

#	Article	IF	CITATIONS
91	Comment on: Takeda et al. Loss of ACE2 Exaggerates High-Calorie Diet-Induced Insulin Resistance by Reduction of GLUT4 in Mice. Diabetes 2013;62:223-233. Diabetes, 2013, 62, e9-e9.	0.3	1
92	From cell surface to nucleus: Mas transportation in hypertension. Cardiovascular Research, 2020, 116, 1929-1931.	1.8	1
93	ADAM17 $\hat{a} \in e$ nriched Exosomes Contribute to Neuronal Activation in Hypertension. FASEB Journal, 2021, 35,	0.2	1
94	Perinatal Epigenetic Modulation of the Brain Renin Angiotensin System Programs Cardiometabolic Diseases. FASEB Journal, 2020, 34, 1-1.	0.2	1
95	Abstract 79: Knockdown of ACE2 in the Paraventricular Nucleus Partially Reverses the Protective Effects of Brain ACE2 in DOCA-salt Hypertension. Hypertension, 2012, 60, .	1.3	1
96	Brain-Selective Expression of Exogenous Angiotensin (AT1) Receptors Causes Enhanced Cardiovascular Sensitivity Hypertension, 2000, 36, 681-681.	1.3	1
97	ACE2 prevention of oxidative stress in the brain is associated with a reduction in Angiotensin Ilâ€induced sympathetic vasomodulation. FASEB Journal, 2008, 22, 1236.3.	0.2	1
98	ACE2 Shedding: A New Mechanism For Neurogenic Hypertension. FASEB Journal, 2012, 26, 893.1.	0.2	1
99	Tissueâ€specific expression of angiotensinâ€converting enzyme 2 (ACE2) from two promoter regions is unaffected by elevated levels of renin and angiotensinogen. FASEB Journal, 2012, 26, 1134.9.	0.2	1
100	Abstract 088: At ₁ Receptor on Glutamatergic Neurons Regulate Autonomic Function Through Modulation of Neuronal Excitability and Sympathetic Outflow. Hypertension, 2017, 70, .	1.3	1
101	Association of Chronic Nicotine Inhalation with Hypertension in Mice. FASEB Journal, 2018, 32, 918.7.	0.2	1
102	Determination of Sex Differences in Activities of Angiotensin-Converting Enzyme 2 (ACE2) Requires an Activity Assay That Doesn't Underestimate ACE2. American Journal of Hypertension, 2013, 26, 1172-1172.	1.0	0
103	ACE2 and Glycemic Control. , 2015, , 219-223.		0
104	Chronic Inhaled Nicotineâ€Induced Pulmonary Hypertension and Right Ventricular Remodeling are Mediated by Angiotensinâ€II Type 1 Receptor. FASEB Journal, 2021, 35, .	0.2	0
105	Epigenetic Programming Reverses Cardiometabolic Dysfunctions and Modulates Hypothalamic Genes Involved in Oxidative Stress and Inflammation in Angiotensin II-Treated Male Mice. Journal of the Endocrine Society, 2021, 5, A286-A286.	0.1	0
106	Epigenetic Programming Induces Changes in Metabolic and Gene Expression and Reverses the Effects of Angâ€I Infusion in Male Mice. FASEB Journal, 2021, 35, .	0.2	0
107	ACE2 expression is affected by Angiotensinâ€l type I receptor (AT ₁ R) and kinin B1 receptor (B) Tj	ETQq1 1 	0.784314 rg
108	Activation of neuronal AT 1 R exacerbates hypertensionâ€induced cognitive impairment through decreasing neuronal function. FASEB Journal, 2021, 35, .	0.2	0

#	Article	IF	CITATIONS
109	Abstract MP57: Chronic Inhibition Of Brain Rhomboid-like Protein 2 (irhom2) Activity Decreases Arterial Blood Pressure In Salt-sensitive Hypertension In Mice. Hypertension, 2021, 78, .	1.3	0
110	Abstract MP28: UBR1 And BRCC36 Regulate ACE2 Ubiquitination And Deubiquitination In Ang-II Induced Hypertension Hypertension, 2021, 78, .	1.3	0
111	Inâ€vitro and inâ€vivo ACE2 gene delivery: evidence for a role in the central regulation of blood pressure. FASEB Journal, 2007, 21, A889.	0.2	0
112	ACE2 overâ€expression ameliorates glycemic homeostasis in diabetic mice. FASEB Journal, 2008, 22, 1236.2.	0.2	0
113	Activator of Câ€protein Signaling 3 null mice: unexpected alterations in metabolic and cardiovascular function. FASEB Journal, 2008, 22, 908.1.	0.2	0
114	Central ACE2 reduces blood pressure and restores baroreflex and autonomic functions in chronically hypertensive mice. FASEB Journal, 2009, 23, 607.1.	0.2	0
115	ACE2 gene therapy leads to Angâ€(1â€7)â€mediated restoration of glucose metabolism in diabetic mice. FASEB Journal, 2009, 23, 991.9.	0.2	0
116	ACE2 expression in the central nervous system reduces angiotensinâ€∦â€mediated hypertension and cardiac hypertrophy in transgenic mice FASEB Journal, 2009, 23, 802.1.	0.2	0
117	Selective over expression of central ACE2 prevents baroreflex dysfunction in the chronic heart failure. FASEB Journal, 2009, 23, 610.2.	0.2	0
118	ACE2 overâ€expression regulates oxidative stress gene expression in the brainstem. FASEB Journal, 2010, 24, 1036.7.	0.2	0
119	ACE2 Inhibits Angiotensinâ€II Mediated NADPH Oxidase Activation In The Central Nervous System. FASEB Journal, 2010, 24, 1018.3.	0.2	0
120	Central angiotensinâ€converting enzyme 2 overexpression decreases blood pressure and enhances baroreflex function in mice with chronic heart failure. FASEB Journal, 2010, 24, 809.20.	0.2	0
121	ACE 2: A potential therapeutic target for Angiotensin Ilâ€mediated insulin resistance and glucose intolerance. FASEB Journal, 2010, 24, .	0.2	0
122	ACE2 overâ€expression decreases the development of neurogenic hypertension and is associated with activation of nitric oxide synthase and nitric oxide release in human ACE2 transgenic mice. FASEB Journal, 2010, 24, .	0.2	0
123	Stimulation of angiotensinâ€converting enzyme 2 promoter activity by hepatocyte nuclear factor 1β (HNF1β) in insulinoma cells. FASEB Journal, 2011, 25, 1063.5.	0.2	0
124	Angiotensin converting enzyme 2 attenuates angiotensin IIâ€mediated phosphorylation of MAP kinase and Akt in neurons. FASEB Journal, 2012, 26, 703.21.	0.2	0
125	ACE2 reduces hyperglycemia by preventing pancreatic renin angiotensin system overâ€activation in high fat dietâ€fed mice. FASEB Journal, 2012, 26, 1093.11.	0.2	0
126	Hepatocyte nuclear factors 1α and 1β (HNF1α and HNF1β) are powerful inducers of the enzymatic activity of angiotensinâ€converting enzyme 2 (ACE2) in insulinâ€secreting cells. FASEB Journal, 2012, 26, 713.3.	0.2	0

Eric D Lazartigues

#	Article	IF	CITATIONS
127	Development of a radioligand for angiotensinâ€converting enzymeâ€2 (ACEâ€2). FASEB Journal, 2012, 26, 1105.6.	0.2	0
128	ACE2 inhibits Endoplasmic Reticulum stress and autophagy associated to neurogenic hypertension. FASEB Journal, 2013, 27, 929.1.	0.2	0
129	Hepatocyte nuclear factor 1α stimulates the compensatory axis of the reninâ€angiotensin system in the pancreatic islet by specific induction of angiotensinâ€converting enzyme 2 (ACE2). FASEB Journal, 2013, 27, 1154.15.	0.2	Ο
130	V1A-vasopressin receptor blockade reduces the fluoxetine-induced pressor response in freely moving rats. Journal of Hypertension, 1999, 17, 853-854.	0.3	0
131	Increased ADAM17 Expression in ACE2 Knockout Mice is Associated with Increased Excitability of Paraventricular Nucleus Preâ€sympathetic Neurons. FASEB Journal, 2015, 29, 984.16.	0.2	Ο
132	Effects of Chronically Inhaled Nicotine on Cardiac Function. FASEB Journal, 2018, 32, 901.8.	0.2	0
133	Chronic Nicotine Inhalation Promotes the Development of Pulmonary Hypertension. FASEB Journal, 2019, 33, 696.22.	0.2	Ο
134	ADAM17 on glutamatergic neurons contributes to peripheral immune activation through increasing sympathetic activity. FASEB Journal, 2019, 33, 740.6.	0.2	0
135	Kinetensin is an Endogenous βâ€arrestinâ€biased Ligand of Angiotensin AT1 receptor. FASEB Journal, 2020, 34, 1-1.	0.2	Ο
136	Abstract 7: Activation Of Neuronal At 1 R Exacerbates Hypertension-induced Reduction In Neuronal Function Hypertension, 2020, 76, .	1.3	0
137	Selective blockade of AT ₁ R and B ₁ R modulates the expression of ACE2 ubiquitination partners. FASEB Journal, 2022, 36, .	0.2	Ο
138	MicroRNAs Regulate Hypothalamic AT ₂ R Expression in Hypercaloric Dietâ€Induced Epigenetic Programming of Male Mice Offspring. FASEB Journal, 2022, 36, .	0.2	0
139	Cardiopulmonary protection against nicotineâ€induced pulmonary hypertension and right ventricular remodeling in mice is not mediated by ovarian hormones. FASEB Journal, 2022, 36, .	0.2	0