
Francis E Nano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10959648/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Escherichia coli recombinant expression of SARS-CoV-2 protein fragments. Microbial Cell Factories, 2022, 21, 21.	4.0	7
2	Temperature-sensitive recombinant subtilisin protease variants that efficiently degrade molecular biology enzymes. FEMS Microbiology Letters, 2020, 367, .	1.8	1
3	Heterologous expression of LamA gene encoded endo-β-1,3-glucanase and CO2 fixation by bioengineered Synechococcus sp. PCC 7002. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	2

Synthetic temperature-inducible lethal gene circuits in Escherichia coli. Microbiology (United) Tj ETQq0 0 0 rgBT /Overlock 10, Tf 50 622

5	Temperature Sensitivity Conferred by <i>ligA</i> Alleles from Psychrophilic Bacteria upon Substitution in Mesophilic Bacteria and a Yeast Species. Applied and Environmental Microbiology, 2016, 82, 1924-1932.	3.1	2
6	The Structure of the Toxin and Type Six Secretion System Substrate Tse2 in Complex with Its Immunity Protein. Structure, 2016, 24, 277-284.	3.3	25
7	Temperature-Sensitive Salmonella enterica Serovar Enteritidis PT13a Expressing Essential Proteins of Psychrophilic Bacteria. Applied and Environmental Microbiology, 2015, 81, 6757-6766.	3.1	5
8	Stable, temperature-sensitive recombinant strain of <i>Mycobacterium smegmatis</i> generated through the substitution of a psychrophilic <i>ligA</i> gene. FEMS Microbiology Letters, 2015, 362, fnv152.	1.8	13
9	IglC and PdpA Are Important for Promoting Francisella Invasion and Intracellular Growth in Epithelial Cells. PLoS ONE, 2014, 9, e104881.	2.5	18
10	Synthetic Promoters Functional in Francisella novicida and Escherichia coli. Applied and Environmental Microbiology, 2014, 80, 226-234.	3.1	20
11	Generation of protection against Francisella novicida in mice depends on the pathogenicity protein PdpA, but not PdpC or PdpD. Microbes and Infection, 2013, 15, 816-827.	1.9	8
12	Structure of the T6SS lipoprotein TssJ1 from <i>Pseudomonas aeruginosa</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 607-610.	0.7	12
13	The Structure of the Conserved Type Six Secretion Protein TssL (DotU) from Francisella novicida. Journal of Molecular Biology, 2012, 419, 277-283.	4.2	24
14	Francisella enters host cells by Clathrinâ€mediated endocytosis at a cholesterol rich domain. FASEB Journal, 2012, 26, 522.4.	0.5	0
15	Identification of genes essential for Francisella invasion of nonâ€phagocytic cells. FASEB Journal, 2012, 26, 521.4.	0.5	0
16	Francisella tularensis Uses Cholesterol and Clathrin-Based Endocytic Mechanisms to Invade Hepatocytes. Scientific Reports, 2011, 1, 192.	3.3	33
17	Temperature-sensitive bacterial pathogens generated by the substitution of essential genes from cold-loving bacteria: potential use as live vaccines. Journal of Molecular Medicine, 2011, 89, 437-444.	3.9	6
18	Human body temperature and new approaches to constructing temperature-sensitive bacterial vaccines. Cellular and Molecular Life Sciences, 2011, 68, 3019-3031.	5.4	24

Francis E Nano

#	Article	IF	CITATIONS
19	The biochemical properties of the Francisella pathogenicity island (FPI)-encoded proteins IglA, IglB, IglC, PdpB and DotU suggest roles in type VI secretion. Microbiology (United Kingdom), 2011, 157, 3483-3491.	1.8	93
20	Genomeâ€wide screen identifies genes required for Francisella invasion in nonâ€phagocytic cells. FASEB Journal, 2011, 25, 875.3.	0.5	0
21	Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of intracellular growth locus E (IgIE) protein from <i>Francisella tularensis</i> subsp. <i>novicida</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1596-1598.	0.7	8
22	Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13456-13460.	7.1	49
23	Objections to the transfer of Francisella novicida to the subspecies rank of Francisella tularensis. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1717-1718.	1.7	62
24	Characterization of the pathogenicity island protein PdpA and its role in the virulence of Francisella novicida. Microbiology (United Kingdom), 2009, 155, 1489-1497.	1.8	32
25	Comparative Genomic Characterization of Francisella tularensis Strains Belonging to Low and High Virulence Subspecies. PLoS Pathogens, 2009, 5, e1000459.	4.7	112
26	A Francisella novicida pdpA mutant exhibits limited intracellular replication and remains associated with the lysosomal marker LAMP-1. Microbiology (United Kingdom), 2009, 155, 1498-1504.	1.8	45
27	Genetic elements for selection, deletion mutagenesis and complementation inFrancisellaspp FEMS Microbiology Letters, 2008, 278, 86-93.	1.8	24
28	The <i>Francisella</i> Pathogenicity Island Protein PdpD Is Required for Full Virulence and Associates with Homologues of the Type VI Secretion System. Journal of Bacteriology, 2008, 190, 4584-4595.	2.2	104
29	The Francisella pathogenicity island protein IglA localizes to the bacterial cytoplasm and is needed for intracellular growth. BMC Microbiology, 2007, 7, 1.	3.3	263
30	The <i>Francisella</i> Pathogenicity Island. Annals of the New York Academy of Sciences, 2007, 1105, 122-137.	3.8	160
31	Biosafety and Selectable Markers. Annals of the New York Academy of Sciences, 2007, 1105, 405-417.	3.8	17
32	Suppression of Francisella tularensis growth in the rat by co-infection with F. novicida. FEMS Microbiology Letters, 2006, 153, 71-74.	1.8	14
33	Virulence of Francisella spp. in Chicken Embryos. Infection and Immunity, 2006, 74, 4809-4816.	2.2	27
34	Construction and Characterization of a Highly Efficient Francisella Shuttle Plasmid. Applied and Environmental Microbiology, 2004, 70, 7511-7519.	3.1	152
35	MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4246-4249.	7.1	253
36	A Francisella tularensis Pathogenicity Island Required for Intramacrophage Growth. Journal of Bacteriology, 2004, 186, 6430-6436.	2.2	330

Francis E Nano

#	Article	IF	CITATIONS
37	Allelic exchange inFrancisella tularensisusing PCR products. FEMS Microbiology Letters, 2003, 229, 195-202.	1.8	86
38	Francisella novicida LPS has greater immunobiological activity in mice than F. tularensis LPS, and contributes to F. novicida murine pathogenesis. Microbes and Infection, 2003, 5, 397-403.	1.9	99
39	The identification of five genetic loci ofFrancisella novicidaassociated with intracellular growth. FEMS Microbiology Letters, 2002, 215, 53-56.	1.8	163
40	The identification of five genetic loci of Francisella novicida associated with intracellular growth. FEMS Microbiology Letters, 2002, 215, 53-56.	1.8	1
41	Heat-labile proteases in molecular biology applications. FEMS Microbiology Letters, 2001, 197, 59-63.	1.8	13
42	Assessment of the serodiagnostic potential of nine novel proteins fromMycobacterium tuberculosis. FEMS Microbiology Letters, 2001, 198, 31-36.	1.8	23
43	Isolation and characterization ofFrancisella novicidamutants defective in lipopolysaccharide biosynthesis. FEMS Microbiology Letters, 2000, 182, 63-67.	1.8	39
44	The respiratory burst-inhibiting acid phosphatase AcpA is not essential for the intramacrophage growth or virulence ofFrancisella novicida. FEMS Microbiology Letters, 1999, 176, 85-90.	1.8	31
45	Identification of novel immunogenicMycobacterium tuberculosispeptides that stimulate mononuclear cells from immune donors. FEMS Microbiology Letters, 1999, 177, 123-130.	1.8	4
46	MglA and MglB are required for the intramacrophage growth ofFrancisella novicida. Molecular Microbiology, 1998, 29, 247-259.	2.5	182
47	Phase variation in Francisella tularensis affecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Molecular Microbiology, 1996, 20, 867-874.	2.5	113
48	Characterization and Sequencing of a Respiratory Burst-inhibiting Acid Phosphatase from Francisella tularensis. Journal of Biological Chemistry, 1996, 271, 10973-10983.	3.4	144
49	Electroporation of Francisella tularensis. , 1995, 47, 149-154.		19
50	New vectors for the in vitro generation of alkaline phosphatase fusions to proteins encoded by G + C-rich dna. Gene, 1995, 155, 133-134.	2.2	18
51	Isolation of a Francisella tularensis mutant that is sensitive to serum and oxidative killing and is avirulent in mice: Correlation with the loss of MinD homologue expression. FEMS Microbiology Letters, 1994, 124, 157-165.	1.8	36
52	Lipoarabinomannan from Mycobacterium tuberculosis modulates the generation of reactive nitrogen intermediates by gamma interferon-activated macrophages. FEMS Immunology and Medical Microbiology, 1994, 8, 299-305.	2.7	2
53	The Genus Francisella. , 1992, , 3987-3993.		1
54	Arg276 of GseA, a Chlamydiatrachomatis Kdo transferase, is required for the synthesis of the chlamydial genus-specific epitope in Escherichia coli. FEMS Microbiology Letters, 1992, 96, 49-54.	1.8	2

#	Article	IF	CITATIONS
55	Identification of a heat-modifiable protein of Francisella tularensis and molecular cloning of the encoding gene. Microbial Pathogenesis, 1988, 5, 109-119.	2.9	35
56	The lactose carrier ofEscherichia colifunctionally incorporated inRhodopseudomonas sphaeroidesobeys the regulatory conditions of the phototrophic bacterium. FEBS Letters, 1983, 164, 185-190.	2.8	20