Laurie Ailles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1095918/publications.pdf

Version: 2024-02-01

44 papers

5,450 citations

304368 22 h-index 243296 44 g-index

46 all docs

46 docs citations

46 times ranked

10211 citing authors

#	Article	IF	CITATIONS
1	Development and Validation of an Oral Cavity Cancer Outcomes Prediction Score Incorporating Patient-Derived Xenograft Engraftment. JAMA Otolaryngology - Head and Neck Surgery, 2022, , .	1.2	1
2	3D microgels to quantify tumor cell properties and therapy response dynamics. Biomaterials, 2022, 283, 121417.	5.7	11
3	Dose predictions for [177Lu]Lu-DOTA-panitumumab F(ab′)2 in NRG mice with HNSCC patient-derived tumour xenografts based on [64Cu]Cu-DOTA-panitumumab F(ab′)2 – implications for a PET theranostic strategy. EJNMMI Radiopharmacy and Chemistry, 2021, 6, 25.	1.8	5
4	Side population analysis in clear cell renal cell carcinoma. Biochemical and Biophysical Research Communications, 2021, 585, 196-202.	1.0	0
5	Gels for Live Analysis of Compartmentalized Environments (GLAnCE): A tissue model to probe tumour phenotypes at tumour-stroma interfaces. Biomaterials, 2020, 228, 119572.	5.7	12
6	Spleen tyrosine kinase expression is correlated with human papillomavirus in head and neck cancer. Oral Oncology, 2020, 101, 104529.	0.8	5
7	Flavopiridol causes cell cycle inhibition and demonstrates anti-cancer activity in anaplastic thyroid cancer models. PLoS ONE, 2020, 15, e0239315.	1.1	10
8	Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature, 2020, 586, 120-126.	13.7	249
9	Establishment and Use of Patient-Derived Xenograft Models for Drug Testing in Head and Neck Squamous Cell Carcinoma. STAR Protocols, 2020, 1, 100024.	0.5	10
10	Low junctional adhesion molecule-A expression is associated with an epithelial to mesenchymal transition and poorer outcomes in high-grade serous carcinoma of uterine adnexa. Modern Pathology, 2020, 33, 2361-2377.	2.9	4
11	PI3K Inhibitors Curtail MYC-Dependent Mutant p53 Gain-of-Function in Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2020, 26, 2956-2971.	3.2	33
12	Stem/progenitor cell marker expression in clear cell renal cell carcinoma: a potential relationship with the immune microenvironment to be explored. BMC Cancer, 2020, 20, 272.	1.1	6
13	A TRACER culture invasion assay to probe the impact of cancer associated fibroblasts on head and neck squamous cell carcinoma cell invasiveness. Biomaterials Science, 2020, 8, 3078-3094.	2.6	24
14	MicroSPECT/CT Imaging of Cell-Line and Patient-Derived EGFR-Positive Tumor Xenografts in Mice with Panitumumab Fab Modified with Hexahistidine Peptides To Enable Labeling with ^{99m} Tc(I) Tricarbonyl Complex. Molecular Pharmaceutics, 2019, 16, 3559-3568.	2.3	10
15	N-Glycoproteomics of Patient-Derived Xenografts: A Strategy to Discover Tumor-Associated Proteins in High-Grade Serous Ovarian Cancer. Cell Systems, 2019, 8, 345-351.e4.	2.9	31
16	A controlled trial of HNSCC patientâ€derived xenografts reveals broad efficacy of PI3Kα inhibition in controlling tumor growth. International Journal of Cancer, 2019, 145, 2100-2106.	2.3	17
17	Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis. Nature Metabolism, 2019, 1, 147-157.	5.1	150
18	Patient-derived xenografts: a promising resource for preclinical cancer research. Molecular and Cellular Oncology, 2019, 6, 1558684.	0.3	3

#	Article	lF	CITATIONS
19	A TRACER 3D Co-Culture tumour model for head and neck cancer. Biomaterials, 2018, 164, 54-69.	5.7	53
20	Proteomic Analysis of Cancer-Associated Fibroblasts Reveals a Paracrine Role for MFAP5 in Human Oral Tongue Squamous Cell Carcinoma. Journal of Proteome Research, 2018, 17, 2045-2059.	1.8	65
21	Hedgehog inhibition mediates radiation sensitivity in mouse xenograft models of human esophageal adenocarcinoma. PLoS ONE, 2018, 13, e0194809.	1.1	16
22	Patient-Derived Xenografts for Prognostication and Personalized Treatment for Head and Neck Squamous Cell Carcinoma. Cell Reports, 2018, 25, 1318-1331.e4.	2.9	56
23	Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nature Genetics, 2017, 49, 180-185.	9.4	195
24	Interrogation of Functional Cell-Surface Markers Identifies CD151 Dependency in High-Grade Serous Ovarian Cancer. Cell Reports, 2017, 18, 2343-2358.	2.9	38
25	An Immune Atlas of Clear Cell Renal Cell Carcinoma. Cell, 2017, 169, 736-749.e18.	13.5	751
26	Rapid determination of the tumour stroma ratio in squamous cell carcinomas with desorption electrospray ionization mass spectrometry (DESI-MS): a proof-of-concept demonstration. Analyst, The, 2017, 142, 3250-3260.	1.7	11
27	Efficient generation of patient-matched malignant and normal primary cell cultures from clear cell renal cell carcinoma patients: clinically relevant models for research and personalized medicine. BMC Cancer, 2016, 16, 485.	1.1	23
28	Clonal evolution and tumor-initiating cells: New dimensions in cancer patient treatment. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 40-51.	2.7	19
29	Identification of CD146 as a marker enriched for tumor-propagating capacity reveals targetable pathways in primary human sarcoma. Oncotarget, 2015, 6, 40283-40294.	0.8	15
30	Cell Surface Profiling Using High-Throughput Flow Cytometry: A Platform for Biomarker Discovery and Analysis of Cellular Heterogeneity. PLoS ONE, 2014, 9, e105602.	1.1	65
31	Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nature Cell Biology, 2014, 16, 889-901.	4.6	174
32	Developmental signaling pathways in cancer stem cells of solid tumors. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2481-2495.	1.1	159
33	Isolation and Characterization of Cancer Stem Cells In Vitro. Methods in Molecular Biology, 2013, 946, 181-204.	0.4	13
34	Targeting the Hedgehog Pathway in Cancer: Can the Spines Be Smoothened?. Clinical Cancer Research, 2011, 17, 2071-2073.	3 . 2	11
35	Tumor-Initiating Cells Are Rare in Many Human Tumors. Cell Stem Cell, 2010, 7, 279-282.	5.2	205
36	Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14016-14021.	3.3	584

#	Article	IF	CITATIONS
37	Separating Stem Cells by Flow Cytometry: Reducing Variability for Solid Tissues. Cell Stem Cell, 2009, 5, 579-583.	5.2	58
38	A NEUROSURGEON'S GUIDE TO STEM CELLS, CANCER STEM CELLS, AND BRAIN TUMOR STEM CELLS. Neurosurgery, 2009, 65, 237-250.	0.6	62
39	Identification of phenotypic neural stem cells in a pediatric astroblastoma. Journal of Neurosurgery: Pediatrics, 2005, 103, 446-450.	0.8	8
40	A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 2003, 423, 409-414.	13.7	1,981
41	Transcriptional Targeting of Lentiviral Vectors by Long Terminal Repeat Enhancer Replacement. Journal of Virology, 2002, 76, 3996-4007.	1.5	52
42	Robust and Efficient Regulation of Transgene Expression in Vivo by Improved Tetracycline-Dependent Lentiviral Vectors. Molecular Therapy, 2002, 5, 252-261.	3.7	145
43	Lentiviral gene transfer and ex vivo expansion of human primitive stem cells capable of primary, secondary, and tertiary multilineage repopulation in NOD/SCID mice. Blood, 2002, 100, 4391-4400.	0.6	84
44	Molecular evidence of lentiviral vector-mediated gene transfer into human self-renewing, multi-potent, long-term NOD/SCID repopulating hematopoietic cells. Molecular Therapy, 2002, 6, 615-26.	3.7	25