
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10958604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Apoptosis reprogramming triggered by splicing inhibitors sensitizes multiple myeloma cells to Venetoclax treatment. Haematologica, 2022, 107, 1410-1426.	3.5	6
2	INCB84344-201: Ponatinib and steroids in frontline therapy for unfit patients with Ph+ acute lymphoblastic leukemia. Blood Advances, 2022, 6, 1742-1753.	5.2	33
3	Process development and validation of expanded regulatory T cells for prospective applications: an example of manufacturing a personalized advanced therapy medicinal product. Journal of Translational Medicine, 2022, 20, 14.	4.4	4
4	Impact of Venetoclax and Azacitidine in Treatment-NaÃ⁻ve Patients with Acute Myeloid Leukemia and <i>IDH1/2</i> Mutations. Clinical Cancer Research, 2022, 28, 2753-2761.	7.0	70
5	Measurable Residual Disease in High-Risk Acute Myeloid Leukemia. Cancers, 2022, 14, 1278.	3.7	6
6	Second primary malignancy in myelofibrosis patients treated with ruxolitinib. British Journal of Haematology, 2021, 193, 356-368.	2.5	19
7	Molecular response and quality of life in chronic myeloid leukemia patients treated with intermittent TKIs: First interim analysis of OPTkIMA study. Cancer Medicine, 2021, 10, 1726-1737.	2.8	9
8	Impact of comorbidities and body mass index on the outcome of polycythemia vera patients. Hematological Oncology, 2021, 39, 409-418.	1.7	9
9	Ruxolitinib rechallenge in resistant or intolerant patients with myelofibrosis: Frequency, therapeutic effects, and impact on outcome. Cancer, 2021, 127, 2657-2665.	4.1	14
10	First Interim Analysis of the Italian Dante Study: De-Escalation before Treatment-Free Remission in Patients with Chronic Myeloid Leukemia Treated with First-Line Nilotinib. Blood, 2021, 138, 1474-1474.	1.4	5
11	Long-Term Outcome After Adoptive Immunotherapy With Natural Killer Cells: Alloreactive NK Cell Dose Still Matters. Frontiers in Immunology, 2021, 12, 804988.	4.8	5
12	Life after ruxolitinib: Reasons for discontinuation, impact of disease phase, and outcomes in 218 patients with myelofibrosis. Cancer, 2020, 126, 1243-1252.	4.1	106
13	The timing of plerixafor addition to G-Csf and chemotherapy affects immunological recovery after autologous stem cell transplant in multiple myeloma. Bone Marrow Transplantation, 2020, 55, 946-954.	2.4	3
14	Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. New England Journal of Medicine, 2020, 383, 617-629.	27.0	1,407
15	Amino acid depletion triggered by ÊŸ-asparaginase sensitizes MM cells to carfilzomib by inducing mitochondria ROS-mediated cell death. Blood Advances, 2020, 4, 4312-4326.	5.2	19
16	The new small tyrosine kinase inhibitor ARQ531 targets acute myeloid leukemia cells by disrupting multiple tumor-addicted programs. Haematologica, 2020, 105, 2420-2431.	3.5	12
17	Impact of comorbidities and body mass index in patients with myelofibrosis treated with ruxolitinib. Annals of Hematology, 2019, 98, 889-896.	1.8	10
18	Early minimal residual disease assessment after AML induction with fludarabine, cytarabine and idarubicin (<scp>FLAI</scp>) provides the most useful prognostic information. British Journal of Haematology, 2019, 184, 457-460.	2.5	13

#	Article	IF	CITATIONS
19	Epidemiology, outcome, and risk factors for infectious complications in myelofibrosis patients receiving ruxolitinib: A multicenter study on 446 patients. Hematological Oncology, 2018, 36, 561-569.	1.7	46
20	Depletion of SIRT6 enzymatic activity increases acute myeloid leukemia cells' vulnerability to DNA-damaging agents. Haematologica, 2018, 103, 80-90.	3.5	48
21	Combining flow cytometry and <i>WT1</i> assessment improves the prognostic value of pre-transplant minimal residual disease in acute myeloid leukemia. Haematologica, 2017, 102, e348-e351.	3.5	26
22	Novel strategies of adoptive immunotherapy: How natural killer cells may change the treatment of elderly patients with acute myeloblastic leukemia. Experimental Hematology, 2017, 45, 10-16.	0.4	5
23	The tissue inhibitor of metalloproteinases-1 (TIMP-1) promotes survival and migration of acute myeloid leukemia cells through CD63/PI3K/Akt/p21 signaling. Oncotarget, 2017, 8, 2261-2274.	1.8	46
24	Extracellular ATP induces apoptosis through P2X7R activation in acute myeloid leukemia cells but not in normal hematopoietic stem cells. Oncotarget, 2017, 8, 5895-5908.	1.8	45
25	Longâ€term followâ€up of patients with acute myeloid leukemia surviving and free of disease recurrence for at least 2 years after autologous stem cell transplantation: A report from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Cancer, 2016, 122, 1880-1887.	4.1	31
26	Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood, 2016, 127, 1138-1150.	1.4	89
27	Exploiting tumor vulnerabilities: NAD ⁺ -depleting agents combined with anti-tumor drugs as innovative strategy to treat hematological malignancies. Expert Review of Anticancer Therapy, 2016, 16, 897-898.	2.4	0
28	Dual NAMPT and BTK Targeting Leads to Synergistic Killing of Waldenström Macroglobulinemia Cells Regardless of MYD88 and CXCR4 Somatic Mutation Status. Clinical Cancer Research, 2016, 22, 6099-6109.	7.0	19
29	Larger Size of Donor Alloreactive NK Cell Repertoire Correlates with Better Response to NK Cell Immunotherapy in Elderly Acute Myeloid Leukemia Patients. Clinical Cancer Research, 2016, 22, 1914-1921.	7.0	110
30	Human cord blood-derived platelet lysate enhances the therapeutic activity of adipose-derived mesenchymal stromal cells isolated from Crohn's disease patients in a mouse model of colitis. Stem Cell Research and Therapy, 2015, 6, 170.	5.5	26
31	PGE ₂ -Induced IDO1 Inhibits the Capacity of Fully Mature DCs to Elicit an <i>In Vitro</i> Antileukemic Immune Response. Journal of Immunology Research, 2015, 2015, 1-10.	2.2	53
32	The Human Mesenchymal Stromal Cell-Derived Osteocyte Capacity to Modulate Dendritic Cell Functions Is Strictly Dependent on the Culture System. Journal of Immunology Research, 2015, 2015, 1-10.	2.2	6
33	CD103 marks a subset of human CD34+-derived langerin+ dendritic cells that induce T-regulatory cells via indoleamine 2,3-dioxygenase-1. Experimental Hematology, 2015, 43, 268-276.e5.	0.4	21
34	The tissue inhibitor of metalloproteinases 1 increases the clonogenic efficiency of human hematopoietic progenitor cells through CD63/PI3K/Akt signaling. Experimental Hematology, 2015, 43, 974-985.e1.	0.4	24
35	Reinfusion of highly purified CD133+ bone marrow-derived stem/progenitor cells in patients with end-stage liver disease: A phase I clinical trial. Digestive and Liver Disease, 2015, 47, 1059-1066.	0.9	22
36	The Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) Regulates the Function and Migration of Leukemic Blasts through CD63/PI3K/AKT/P21 Axis. Blood, 2015, 126, 2394-2394.	1.4	1

#	Article	IF	CITATIONS
37	The SOCS3-Independent Expression of IDO2 Supports the Homeostatic Generation of T Regulatory Cells by Human Dendritic Cells. Journal of Immunology, 2014, 192, 1231-1240.	0.8	72
38	Gpr171, a putative P2Y-like receptor, negatively regulates myeloid differentiation in murine hematopoietic progenitors. Experimental Hematology, 2013, 41, 102-112.	0.4	19
39	Extracellular Purines Promote the Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells to the Osteogenic and Adipogenic Lineages. Stem Cells and Development, 2013, 22, 1097-1111.	2.1	95
40	NEW STRATEGIES FOR STEM CELL MOBILIZATION. Mediterranean Journal of Hematology and Infectious Diseases, 2012, 4, e2012066.	1.3	22
41	Purinergic signaling inhibits human acute myeloblastic leukemia cell proliferation, migration, and engraftment in immunodeficient mice. Blood, 2012, 119, 217-226.	1.4	52
42	Extracellular ATP Exerts Opposite Effects on Activated and Regulatory CD4+ T Cells via Purinergic P2 Receptor Activation. Journal of Immunology, 2012, 189, 1303-1310.	0.8	121
43	The sixth sense: hematopoietic stem cells detect danger through purinergic signaling. Blood, 2012, 120, 2365-2375.	1.4	83
44	Proteomic Signature of CD34+ Cells From Chronic Myeloid Leukemia Patients. Blood, 2012, 120, 3733-3733.	1.4	0
45	Human Blood Dendritic Cells Induce Tregs Through the PGE2-Independent Expression of an Active Form of IDO2 Enzyme. Blood, 2012, 120, 1047-1047.	1.4	0
46	Purinergic stimulation of human mesenchymal stem cells potentiates their chemotactic response to CXCL12 and increases the homing capacity and production of proinflammatory cytokines. Experimental Hematology, 2011, 39, 360-374.e5.	0.4	73
47	The CD47 pathway is deregulated in human immune thrombocytopenia. Experimental Hematology, 2011, 39, 486-494.	0.4	21
48	Conditioning regimen using busulfan plus melphalan in hematopoietic stem cell transplantation. Revista Brasileira De Hematologia E Hemoterapia, 2011, 33, 172-173.	0.7	4
49	Indoleamine 2,3-dioxygenase-expressing leukemic dendritic cells impair a leukemia-specific immune response by inducing potent T regulatory cells. Haematologica, 2010, 95, 2022-2030.	3.5	95
50	The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: focus on hematology. Blood, 2009, 113, 2394-2401.	1.4	237
51	Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34â^' cell population with intrinsic resistance to imatinib. Blood, 2009, 114, 5191-5200.	1.4	62
52	Purinergic Signaling Modulates Human Bone Marrow-Derived Mesenchymal Stem Cells Function Blood, 2009, 114, 1441-1441.	1.4	1
53	Hematopoietic stem cell mobilization. Haematologica, 2008, 93, 321-324.	3.5	38
54	The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood, 2007, 109, 533-542.	1.4	93

#	Article	IF	CITATIONS
55	Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25â^' into CD25+ T regulatory cells. Blood, 2007, 109, 2871-2877.	1.4	357
56	Positive Selection and Transplantation of Autologous Highly Purified CD133+ Stem Cells in Resistant/Relapsed Chronic Lymphocytic Leukemia Patients Results in Rapid Hematopoietic Reconstitution without an Adequate Leukemic Cell Purging. Biology of Blood and Marrow Transplantation, 2007, 13, 1224-1232.	2.0	23
57	Phase I/II clinical trial of sequential subcutaneous and intravenous delivery of dendritic cell vaccination for refractory multiple myeloma using patientâ€specific tumour idiotype protein or idiotype (VDJ)â€derived class lâ€restricted peptides. British Journal of Haematology, 2007, 139, 415-424.	2.5	58
58	Mobilization of Bone Marrow-Derived Hematopoietic and Endothelial Stem Cells After Orthotopic Liver Transplantation and Liver Resection. Stem Cells, 2006, 24, 2817-2825.	3.2	79
59	Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. Blood, 2006, 108, 218-227.	1.4	226
60	Nucleofection Is an Efficient Nonviral Transfection Technique for Human Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells, 2006, 24, 454-461.	3.2	123
61	Dendritic cells of immune thrombocytopenic purpura (ITP) show increased capacity to present apoptotic platelets to T lymphocytes. Experimental Hematology, 2006, 34, 879-887.	0.4	88
62	Acute Myeloid Leukemia-Derived Dendritic Cells Express the Immunoregulatory Enzyme Indoleamine 2,3-dioxygenase Blood, 2006, 108, 1899-1899.	1.4	0
63	Impaired Dendritic Cell Immunophenotype and Function in Heart Transplant Patients Undergoing Active Cytomegalovirus Infection. Transplantation, 2005, 79, 219-227.	1.0	16
64	The Kinetic Status of Hematopoietic Stem Cell Subpopulations Underlies a Differential Expression of Genes Involved in Self-Renewal, Commitment, and Engraftment. Stem Cells, 2005, 23, 496-506.	3.2	45
65	Interleukin-12 production by leukemia-derived dendritic cells counteracts the inhibitory effect of leukemic microenvironment on T cells. Experimental Hematology, 2005, 33, 1521-1530.	0.4	44
66	Hepatocyte Growth Factor (HGF) Favors Monocyte Differentiation into Interleukin (IL)-10+IL-12neg Regulatory Dendritic Cells Blood, 2005, 106, 2297-2297.	1.4	0
67	In Vitro and In Vivo Induction of Human Hematopoietic Stem Cell Migration by Extracellular UTP Blood, 2005, 106, 1730-1730.	1.4	Ο
68	Phase II study of a single pegfilgrastim injection as an adjunct to chemotherapy to mobilize stem cells into the peripheral blood of pretreated lymphoma patients. Haematologica, 2005, 90, 225-31.	3.5	62
69	Stem cell plasticity: time for a reappraisal?. Haematologica, 2005, 90, 360-81.	3.5	25
70	Pegfilgrastim for mobilization of stem cells in allogeneic donors. Haematologica, 2005, 90, 1590A.	3.5	0
71	Generation of Dendritic Cells from Positively Selected CD14 + Monocytes for Anti-tumor Immunotherapy. Leukemia and Lymphoma, 2004, 45, 1419-1428.	1.3	40
72	Dendritic Cell Differentiation. Journal of Immunology, 2004, 172, 3-4.	0.8	6

#	Article	IF	CITATIONS
73	Granulocyte colonyâ€stimulating factor promotes the generation of regulatory DC through induction of ILâ€10 and IFNâ€Î±. European Journal of Immunology, 2004, 34, 1291-1302.	2.9	120
74	Regulatory T cells and tolerogenic dendritic cells: from basic biology to clinical applications. Immunology Letters, 2004, 94, 11-26.	2.5	134
75	Extracellular nucleotides are potent stimulators of human hematopoietic stem cells in vitro and in vivo. Blood, 2004, 104, 1662-1670.	1.4	111
76	Purification of Allogeneic Idiotype-Specific T Lymphocytes According to IFN-Î ³ Production for Adoptive Immunotherapy in Multiple Myeloma Patients Blood, 2004, 104, 2119-2119.	1.4	0
77	Interleukin-12 Gene Expression into Acute Myeloid Leukemia-Derived Dendritic Cells Overcomes T-Cell Functional Impairment Induced by Leukemic Microenvironment Blood, 2004, 104, 1816-1816.	1.4	6
78	Generation of dendritic cells from CD14+ monocytes positively selected by immunomagnetic adsorption for multiple myeloma patients enrolled in a clinical trial of anti-idiotype vaccination. British Journal of Haematology, 2003, 121, 240-250.	2.5	43
79	Functional and kinetic characterization of granulocyte colony-stimulating factor-primed CD34â^' human stem cells. British Journal of Haematology, 2003, 123, 720-729.	2.5	12
80	Autologous transplantation of granulocyte colony-stimulating factor–primed bone marrow is effective in supporting myeloablative chemotherapy in patients with hematologic malignancies and poor peripheral blood stem cell mobilization. Blood, 2003, 102, 1595-1600.	1.4	33
81	Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood, 2002, 100, 230-237.	1.4	393
82	The therapeutic role of dendritic cells in cancer immunotherapy. Haematologica, 2002, 87, 62-6.	3.5	1
83	Interleukin-11 induces Th2 polarization of human CD4+ T cells. Blood, 2001, 97, 2758-2763.	1.4	85
84	Reduced susceptibility to apoptosis correlates with kinetic quiescence in disease progression of chronic lymphocytic leukaemia. British Journal of Haematology, 2001, 113, 391-399.	2.5	26
85	Immunotoxins Containing Recombinant Anti-CTLA-4 Single-Chain Fragment Variable Antibodies and Saporin: In Vitro Results and In Vivo Effects in an Acute Rejection Model. Journal of Immunology, 2001, 167, 4222-4229.	0.8	34
86	Stem Cell Factor and FLT3-Ligand Are Strictly Required to Sustain the Long-Term Expansion of Primitive CD34+DRâ^'Dendritic Cell Precursors. Journal of Immunology, 2001, 166, 848-854.	0.8	61
87	In vitroanti-tumour activity of anti-CD80 and anti-CD86 immunotoxins containing type 1 ribosome-inactivating proteins. British Journal of Haematology, 2000, 110, 351-361.	2.5	65
88	Efficient presentation of tumor idiotype to autologous T cells by CD83+ dendritic cells derived from highly purified circulating CD14+ monocytes in multiple myeloma patients. Experimental Hematology, 2000, 28, 931-940.	0.4	46
89	Molecular Remission After Allogeneic or Autologous Transplantation of Hematopoietic Stem Cells for Multiple Myeloma. Journal of Clinical Oncology, 2000, 18, 2273-2281.	1.6	153
90	Engraftment, clinical, and molecular follow-up of patients with multiple myeloma who were reinfused with highly purified CD34+ cells to support single or tandem high-dose chemotherapy. Blood, 2000, 95, 2234-2239.	1.4	66

#	Article	IF	CITATIONS
91	Thrombopoietin, Interleukin-11, and Early-Acting Megakaryocyte Growth Factors in Human Myeloid Leukemia Cells. Leukemia and Lymphoma, 2000, 40, 179-190.	1.3	2
92	Rapid Induction of CD40 on a Subset of Granulocyte Colony-Stimulating Factor–Mobilized CD34+ Blood Cells Identifies Myeloid Committed Progenitors and Permits Selection of Nonimmunogenic CD40â^' Progenitor Cells. Blood, 1999, 94, 2293-2300.	1.4	30
93	Selection and transplantation of autologous CD34+ B-lineage negative cells in advanced-phase multiple myeloma patients: a pilot study. British Journal of Haematology, 1999, 107, 419-428.	2.5	25
94	Thrombopoietin and interleukin 11 have different modulatory effects on cell cycle and programmed cell death in primary acute myeloid leukemia cells. Experimental Hematology, 1999, 27, 1255-1263.	0.4	16
95	Selective expansion of normal haemopoietic progenitors from chronic myelogenous leukaemia marrow. British Journal of Haematology, 1998, 101, 119-129.	2.5	9
96	Generation and functional characterization of human dendritic cells derived from CD34+cells mobilized into peripheral blood: comparison with bone marrow CD34+cells. British Journal of Haematology, 1998, 101, 756-765.	2.5	60
97	Selection and Transplantation of Autologous Hematopoietic CD34+Cells for Patients with Multiple Myeloma. Leukemia and Lymphoma, 1997, 26, 1-11.	1.3	24
98	Interleukin-9 in Human Myeloid Leukemia Cells. Leukemia and Lymphoma, 1997, 26, 563-573.	1.3	8
99	Cycling Status of CD34+ Cells Mobilized Into Peripheral Blood of Healthy Donors by Recombinant Human Granulocyte Colony-Stimulating Factor. Blood, 1997, 89, 1189-1196.	1.4	106
100	Concomitant Mobilization of Plasma Cells and Hematopoietic Progenitors into Peripheral Blood of Patients with Multiple Myeloma. Stem Cells and Development, 1996, 5, 339-349.	1.0	26
101	C-kit ligand (SCF) in human multiple myeloma cells. Leukemia and Lymphoma, 1996, 20, 457-464.	1.3	16
102	Interleukin-11 (IL-11) acts as a synergistic factor for the proliferation of human myeloid leukaemic cells. British Journal of Haematology, 1995, 91, 319-326.	2.5	18
103	Immunotoxins containing saporin linked to different CD2 monoclonal antibodies: in vitro evaluation. British Journal of Haematology, 1994, 86, 97-105.	2.5	16
104	Expression and functional role of c-kit ligand (SCF) in human multiple myeloma cells. British Journal of Haematology, 1994, 88, 760-769.	2.5	42
105	Ber-H2 (anti-CD30)-saporin immunotoxin: a new tool for the the treatment of Hodgkin's disease and CD30+ lymphoma: in vitro evaluation. British Journal of Haematology, 1992, 81, 203-211.	2.5	77
106	EVIDENCE THAT LONG-TERM BONE MARROW CULTURE OF PATIENTS WITH MULTIPLE MYELOMA FAVORS NORMAL HEMOPOIETIC PROLIFERATION. Transplantation, 1989, 48, 1026-1030.	1.0	11
107	Improvement of human myeloma stem cell growth in a liquid culture system supplemented with phytohemagglutinin. International Journal of Cell Cloning, 1988, 6, 313-323.	1.6	1