Nancy E Stamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10958172/publications.pdf

Version: 2024-02-01

		159585	189892
54	2,571	30	50
papers	citations	h-index	g-index
5.4	5.4	5.4	1500
54	54	54	1589
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Egg Deposition Patterns in Butterflies: Why Do Some Species Cluster Their Eggs Rather Than Deposit Them Singly?. American Naturalist, 1980, 115, 367-380.	2.1	254
2	Effects of Plant Age, Genotype and Herbivory on Plantago Performance and Chemistry. Ecology, 1993, 74, 1778-1791.	3.2	187
3	Variation in Food Quality and Temperature Constrain Foraging of Gregarious Caterpillars. Ecology, 1990, 71, 1031-1039.	3.2	123
4	Chemical variation within and between individuals ofPlantago lanceolata (Plantaginaceae). Journal of Chemical Ecology, 1992, 18, 985-995.	1.8	123
5	Differential Responses of Growth and Two Soluble Phenolics of Tomato to Resource Availability. Ecology, 1996, 77, 247-258.	3.2	113
6	Early Stage of Host Range Expansion by a Specialist Herbivore, Euphydryas Phaeton (Nymphalidae). Ecology, 1992, 73, 526-536.	3.2	103
7	Ecological correlates of explosive seed dispersal. Oecologia, 1983, 59, 272-278.	2.0	95
8	Self-Burial Behaviour of Erodium Cicutarium Seeds. Journal of Ecology, 1984, 72, 611.	4.0	94
9	Resource availability and the trichome defenses of tomato plants. Oecologia, 1996, 106, 181-191.	2.0	93
10	Growth versus molting time of caterpillars as a function of temperature, nutrient concentration and the phenolic rutin. Oecologia, 1990, 82, 107-113.	2.0	83
11	Response of Insect Herbivores to Multiple Allelochemicals Under Different Thermal Regimes. Ecology, 1996, 77, 1088-1102.	3.2	77
12	Phenology of nutritional differences between new and mature leaves and its effect on caterpillar growth. Ecological Entomology, 1990, 15, 447-454.	2.2	72
13	Developmental change in aggregation, defense and escape behavior of buckmoth caterpillars, Hemileuca lucina (Saturniidae). Behavioral Ecology and Sociobiology, 1987, 20, 383-388.	1.4	70
14	Prey species and prey diet affect growth of invertebrate predators. Ecological Entomology, 1998, 23, 68-79.	2.2	62
15	Relative susceptibility to predation of two species of caterpillar on plantain. Oecologia, 1992, 92, 124-129.	2.0	59
16	Indirect effect on survivorship of caterpillars due to presence of invertebrate predators. Oecologia, 1991, 88, 325-330.	2.0	55
17	Fate of Host-Plant Iridoid Glycosides in Lepidopteran Larvae of Nymphalidae and Arcthdae. Journal of Chemical Ecology, 1997, 23, 2955-2965.	1.8	54
18	Iteroparity and Semelparity in Insects. American Naturalist, 1982, 120, 264-268.	2.1	47

#	Article	IF	CITATIONS
19	PRODUCTION AND EFFECT OF SEED SIZE IN A GRASSLAND ANNUAL (ERODIUM BRACHYCARPUM,) Tj ETQq1 1 0	.784314 rg	gBT_/Overlo
20	Presence of predatory wasps and stinkbugs alters foraging behavior of cryptic and non-cryptic caterpillars on plantain (Plantago lanceolata). Oecologia, 1993, 95, 376-384.	2.0	46
21	Effects of light availability on host plant chemistry and the consequences for behavior and growth of an insect herbivore. Entomologia Experimentalis Et Applicata, 1997, 82, 319-333.	1.4	40
22	RESPONSE OF AN INSECT PREDATOR TO PREY FED MULTIPLE ALLELOCHEMICALS UNDER REPRESENTATIVE THERMAL REGIMES. Ecology, 1997, 78, 203-214.	3.2	39
23	Effect of defoliation by checkerspot caterpillars (Euphydryas phaeton) and sawfly larvae (Macrophya) Tj ETQq1 1	0.784314	rgBT /Overl
24	Effects of chlorogenic acid-and tomatine-fed caterpillars on the behavior of an insect predator. Journal of Insect Behavior, 1996, 9, 461-476.	0.7	38
25	Effect of group size on parasitism in a natural population of the Baltimore checkerspot Euphydryas phaeton. Oecologia, 1981, 49, 201-206.	2.0	37
26	Behavioral Interactions of Parasitoids and Baltimore Checkerspot Caterpillars (Euphydryas phaeton). Environmental Entomology, 1982, 11, 100-104.	1.4	37
27	Effects of cages, plant age and mechanical clipping on plantain chemistry. Oecologia, 1994, 99, 66-71.	2.0	35
28	Response of five insect herbivores to multiple allelochemicals under fluctuating temperatures. Entomologia Experimentalis Et Applicata, 1998, 88, 81-96.	1.4	35
29	Factors affecting calculation of nutritional induces for foliageâ€fed insects: an experimental approach. Entomologia Experimentalis Et Applicata, 1991, 61, 101-116.	1.4	34
30	Prey recognition time of praying mantids (Dictyoptera: Mantidae) and consequent survivorship of unpalatable prey (Hemiptera: Lygaeidae). Journal of Insect Behavior, 1991, 4, 265-273.	0.7	32
31	Consequences for Plantain Chemistry and Growth When Herbivores are Attacked by Predators. Ecology, 1995, 77, 535-549.	3.2	31
32	Simultaneous effects of night-time temperature and an allelochemical on performance of an insect herbivore. Oecologia, 1995, 104, 225-233.	2.0	30
33	Searching Behaviour of Parasitoids for Web-Making Caterpillars: A Test of Optimal Searching Theory. Journal of Animal Ecology, 1982, 51, 387.	2.8	29
34	Behaviour of specialist and generalist caterpillars on plantain (Plantago lanceolata). Ecological Entomology, 1992, 17, 273-279.	2.2	24
35	Effect of hostplant genotype and predators on iridoid glycoside content of pupae of a specialist insect herbivore, Junonia coenia (Nymphalidae). Biochemical Systematics and Ecology, 1997, 25, 571-580.	1.3	24
36	EFFICACY OF EXPLOSIVE VS. HYGROSCOPIC SEED DISPERSAL BY AN ANNUAL GRASSLAND SPECIES. American Journal of Botany, 1989, 76, 555-561.	1.7	23

#	Article	IF	Citations
37	Foraging behavior of specialist and generalist caterpillars on plantain (Plantago lanceolata) altered by predatory stinkbugs. Oecologia, 1992, 92, 596-602.	2.0	20
38	Breeding Birds of Riparian Woodland in South-Central Arizona. Condor, 1978, 80, 64.	1.6	18
39	Colony productivity and foundress behaviour of a native wasp versus an invasive social wasp. Ecological Entomology, 2003, 28, 635-644.	2.2	16
40	Foraging behaviour of caterpillars given a choice of plant genotypes in the presence of insect predators. Ecological Entomology, 2000, 25, 486-492.	2.2	15
41	Title is missing!. Journal of Chemical Ecology, 2000, 26, 2367-2386.	1.8	13
42	Allelochemicals in Tomato Leaves Affect a Specialist Insect Herbivore Manduca sexta Negatively but with No III Effects on a Generalist Insect Predator, Podisus maculiventris. Oikos, 1996, 77, 481.	2.7	12
43	Behavior of Harassed Caterpillars and Consequences for Host Plants. Oikos, 1997, 79, 147.	2.7	12
44	Stability of Growth and Consumption Rates and Food Utilization Efficiencies When Insects Are given an Excess of Food. Annals of the Entomological Society of America, 1991, 84, 58-60.	2.5	11
45	Effects of temperature, multiple allelochemicals and larval age on the performance of a specialist caterpillar. Entomologia Experimentalis Et Applicata, 1996, 79, 335-344.	1.4	11
46	Simultaneous effects of temperature and multiple allelochemicals on the performance of a Solanaceae specialist caterpillar (<i>Manduca sexta</i>). Ecoscience, 1996, 3, 81-92.	1.4	10
47	Effects of prey quantity on predatory wasps (Polistes dominulus) when patch quality differs. Behavioral Ecology and Sociobiology, 2003, 54, 310-319.	1.4	9
48	Nest Paper Absorbency, Toughness, and Protein Concentration of a Native vs. an Invasive Social Wasp. Journal of Chemical Ecology, 2005, 31, 1089-1100.	1.8	9
49	Abundant Prey Can Alleviate Previous Adverse Effects on Growth of Juvenile Praying Mantids (Orthoptera: Mantidae). Annals of the Entomological Society of America, 1991, 84, 396-406.	2.5	8
50	Variation and Developmental Change in Activity of Gregarious Caterpillars, Hemileuca Lucina (Saturniidae). Psyche: Journal of Entomology, 1988, 95, 45-58.	0.9	7
51	Availability of Resources for Predators of Chelone Seeds and Their Parasitoids. American Midland Naturalist, 1987, 117, 265.	0.4	6
52	Combined effects of night-time temperature and allelochemicals on performance of a Solanaceae specialist herbivore. Ecoscience, 1997, 4, 286-295.	1.4	5
53	Effects of human presence on two social wasp species. Ecological Entomology, 2006, 31, 13-19.	2.2	4
54	Combined effects of night-time temperature and allelochemicals on performance of a generalist insect herbivore. Entomologia Experimentalis Et Applicata, 1997, 83, 63-72.	1.4	3