Paola Bonizzoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1095731/publications.pdf

Version: 2024-02-01

99 papers

1,475 citations

361413 20 h-index 434195 31 g-index

125 all docs 125
docs citations

125 times ranked

1039 citing authors

#	Article	IF	CITATIONS
1	Finding Maximal Exact Matches Using the r-Index. Journal of Computational Biology, 2022, 29, 188-194.	1.6	4
2	Computational graph pangenomics: a tutorial on data structures and their applications. Natural Computing, 2022, 21, 81-108.	3.0	22
3	On the longest common prefix of suffixes in an inverse Lyndon factorization and other properties. Theoretical Computer Science, 2021, 862, 24-41.	0.9	5
4	Shark: fishing relevant reads in an RNA-Seq sample. Bioinformatics, 2021, 37, 464-472.	4.1	8
5	Inferring cancer progression from Single-Cell Sequencing while allowing mutation losses. Bioinformatics, 2021, 37, 326-333.	4.1	35
6	Triplet-based similarity score for fully multilabeled trees with poly-occurring labels. Bioinformatics, 2021, 37, 178-184.	4.1	13
7	Effective Clustering for Single Cell Sequencing Cancer Data. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 4068-4078.	6.3	8
8	Incomplete Directed Perfect Phylogeny inÂLinear Time. Lecture Notes in Computer Science, 2021, , 172-185.	1.3	0
9	Comparative genome analysis using sample-specific string detection in accurate long reads. Bioinformatics Advances, $2021,1,.$	2.4	5
10	Computing the multi-string BWT and LCP array in external memory. Theoretical Computer Science, 2021, 862, 42-58.	0.9	3
11	gpps: an ILP-based approach for inferring cancer progression with mutation losses from single cell data. BMC Bioinformatics, 2020, 21, 413.	2.6	10
12	Does Relaxing the Infinite Sites Assumption Give Better Tumor Phylogenies? An ILP-Based Comparative Approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1410-1423.	3.0	14
13	MALVA: Genotyping by Mapping-free ALlele Detection of Known VAriants. IScience, 2019, 18, 20-27.	4.1	27
14	Multithread Multistring Burrows–Wheeler Transform and Longest Common Prefix Array. Journal of Computational Biology, 2019, 26, 948-961.	1.6	8
15	Overlap graphs and <i>de Bruijn</i> graphs: data structures for <i>de novo</i> genome assembly in the big data era. Quantitative Biology, 2019, 7, 278-292.	0.5	30
16	ASGAL: aligning RNA-Seq data to a splicing graph to detect novel alternative splicing events. BMC Bioinformatics, 2018, 19, 444.	2.6	26
17	GPPS: an ILP-based approach for inferring cancer progression with mutation losses from single cell data. , 2018, , .		3
18	Inverse Lyndon words and inverse Lyndon factorizations of words. Advances in Applied Mathematics, 2018, 101, 281-319.	0.7	14

#	Article	IF	CITATIONS
19	HapCHAT: adaptive haplotype assembly for efficiently leveraging high coverage in long reads. BMC Bioinformatics, 2018, 19, 252.	2.6	8
20	FSG: Fast String Graph Construction for De Novo Assembly. Journal of Computational Biology, 2017, 24, 953-968.	1.6	12
21	Species-Driven Persistent Phylogeny. Fundamenta Informaticae, 2017, 154, 47-63.	0.4	0
22	An External-Memory Algorithm for String Graph Construction. Algorithmica, 2017, 78, 394-424.	1.3	9
23	A colored graph approach to perfect phylogeny with persistent characters. Theoretical Computer Science, 2017, 658, 60-73.	0.9	12
24	Beyond Perfect Phylogeny., 2017,,.		42
25	FSG: Fast String Graph Construction for De Novo Assembly of Reads Data. Lecture Notes in Computer Science, 2016, , 27-39.	1.3	1
26	On the Minimum Error Correction Problem for Haplotype Assembly in Diploid and Polyploid Genomes. Journal of Computational Biology, 2016, 23, 718-736.	1.6	29
27	LSG: An External-Memory Tool to Compute String Graphs for Next-Generation Sequencing Data Assembly. Journal of Computational Biology, 2016, 23, 137-149.	1.6	14
28	H <scp>ap</scp> C <scp>ol</scp> : accurate and memory-efficient haplotype assembly from long reads. Bioinformatics, 2016, 32, 1610-1617.	4.1	40
29	Covering Pairs in Directed Acyclic Graphs. Computer Journal, 2015, 58, 1673-1686.	2.4	6
30	A Clustering Algorithm for Planning the Integration Process of a Large Number of Conceptual Schemas. Journal of Computer Science and Technology, 2015, 30, 214-224.	1.5	4
31	Existence of constants in regular splicing languages. Information and Computation, 2015, 242, 340-353.	0.7	10
32	On the Fixed Parameter Tractability and Approximability of the Minimum Error Correction Problem. Lecture Notes in Computer Science, 2015, , 100-113.	1.3	8
33	Restricted and Swap Common Superstring: A Multivariate Algorithmic Perspective. Algorithmica, 2015, 72, 914-939.	1.3	1
34	Transcriptome Assembly and Alternative Splicing Analysis. Methods in Molecular Biology, 2015, 1269, 173-188.	0.9	1
35	Modeling Alternative Splicing Variants from RNA-Seq Data with Isoform Graphs. Journal of Computational Biology, 2014, 21, 16-40.	1.6	22
36	Complexity insights of the Minimum Duplication problem. Theoretical Computer Science, 2014, 530, 66-79.	0.9	5

#	Article	IF	CITATIONS
37	Further Steps in TANGO: improved taxonomic assignment in metagenomics. Bioinformatics, 2014, 30, 17-23.	4.1	22
38	Explaining evolution via constrained persistent perfect phylogeny. BMC Genomics, 2014, 15, S10.	2.8	40
39	Constructing String Graphs in External Memory. Lecture Notes in Computer Science, 2014, , 311-325.	1.3	5
40	Covering Pairs in Directed Acyclic Graphs. Lecture Notes in Computer Science, 2014, , 126-137.	1.3	0
41	Parameterized complexity of k-anonymity: hardness and tractability. Journal of Combinatorial Optimization, 2013, 26, 19-43.	1.3	5
42	Haplotype-based prediction of gene alleles using pedigrees and SNP genotypes. , 2013, , .		6
43	Maximum Disjoint Paths on Edge-Colored Graphs: Approximability and Tractability. Algorithms, 2013, 6, 1-11.	2.1	10
44	Reconstructing isoform graphs from RNA-Seq data., 2012,,.		1
45	A fast and practical approach to genotype phasing and imputation on a pedigree with erroneous and incomplete information. , 2012, , .		O
46	A fast and practical approach to genotype phasing and imputation on a pedigree with erroneous and incomplete information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1582-1594.	3.0	1
47	An Efficient Algorithm for Haplotype Inference on Pedigrees with Recombinations and Mutations. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 12-25.	3.0	9
48	The binary perfect phylogeny with persistent characters. Theoretical Computer Science, 2012, 454, 51-63.	0.9	57
49	On the parameterized complexity of the repetition free longest common subsequence problem. Information Processing Letters, 2012, 112, 272-276.	0.6	19
50	A randomized PTAS for the minimum Consensus Clustering with a fixed number of clusters. Theoretical Computer Science, 2012, 429, 36-45.	0.9	1
51	PIntron: a fast method for detecting the gene structure due to alternative splicing via maximal pairings of a pattern and a text. BMC Bioinformatics, 2012, 13, S2.	2.6	8
52	Restricted and Swap Common Superstring: A Parameterized View. Lecture Notes in Computer Science, 2012, , 49-60.	1.3	1
53	Complexity Insights of the Minimum Duplication Problem. Lecture Notes in Computer Science, 2012, , 153-164.	1.3	5
54	Plntron: A fast method for gene structure prediction via maximal pairings of a pattern and a text., $2011, \dots$		0

#	Article	IF	CITATIONS
55	Picture Languages Generated by Assembling Tiles. Fundamenta Informaticae, 2011, 110, 77-93.	0.4	O
56	Anonymizing binary and small tables isÂhardÂtoÂapproximate. Journal of Combinatorial Optimization, 2011, 22, 97-119.	1.3	14
57	ASPicDB: a database of annotated transcript and protein variants generated by alternative splicing. Nucleic Acids Research, 2011, 39, D80-D85.	14.5	38
58	Regular Splicing Languages Must Have a Constant. Lecture Notes in Computer Science, 2011, , 82-92.	1.3	7
59	Constants and label-equivalence: A decision procedure for reflexive regular splicing languages. Theoretical Computer Science, 2010, 411, 865-877.	0.9	4
60	A characterization of (regular) circular languages generated by monotone complete splicing systems. Theoretical Computer Science, 2010, 411, 4149-4161.	0.9	10
61	Fingerprint Clustering with Bounded Number ofÂMissing Values. Algorithmica, 2010, 58, 282-303.	1.3	1
62	On the regularity of circular splicing languages: a survey and new developments. Natural Computing, 2010, 9, 397-420.	3.0	8
63	Variants of constrained longest common subsequence. Information Processing Letters, 2010, 110, 877-881.	0.6	33
64	Pure Parsimony Xor Haplotyping. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010, 7, 598-610.	3.0	4
65	Haplotype Inference on Pedigrees with Recombinations and Mutations. Lecture Notes in Computer Science, 2010, , 148-161.	1.3	0
66	Detecting Alternative Gene Structures from Spliced ESTs: A Computational Approach. Journal of Computational Biology, 2009, 16, 43-66.	1.6	23
67	Picture Languages Generated by Assembling Tiles. Lecture Notes in Computer Science, 2009, , 224-235.	1.3	2
68	Finite Splicing: Generative Capacity, NewÂModels and Complexity Aspects. Natural Computing Series, 2009, , 313-329.	2.2	0
69	Pure Parsimony Xor Haplotyping. Lecture Notes in Computer Science, 2009, , 186-197.	1.3	0
70	On the Approximation of Correlation Clustering and Consensus Clustering. Journal of Computer and System Sciences, 2008, 74, 671-696.	1.2	28
71	Exemplar Longest Common Subsequence. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007, 4, 535-543.	3.0	30
72	A Linear-Time Algorithm for the Perfect Phylogeny Haplotype Problem. Algorithmica, 2007, 48, 267-285.	1.3	22

#	Article	IF	CITATIONS
73	Linear splicing and syntactic monoid. Discrete Applied Mathematics, 2006, 154, 452-470.	0.9	4
74	ASPIC: a web resource for alternative splicing prediction and transcript isoforms characterization. Nucleic Acids Research, 2006, 34, W440-W443.	14.5	27
75	Computational methods for alternative splicing prediction. Briefings in Functional Genomics & Proteomics, 2006, 5, 46-51.	3.8	16
76	Exemplar Longest Common Subsequence. Lecture Notes in Computer Science, 2006, , 622-629.	1.3	1
77	Fingerprint Clustering with Bounded Number of Missing Values. Lecture Notes in Computer Science, 2006, , 106-116.	1.3	0
78	A Decision Procedure for Reflexive Regular Splicing Languages. Lecture Notes in Computer Science, 2006, , 315-326.	1.3	3
79	On the power of circular splicing. Discrete Applied Mathematics, 2005, 150, 51-66.	0.9	11
80	ASPIC: a novel method to predict the exon-intron structure of a gene that is optimally compatible to a set of transcript sequences. BMC Bioinformatics, 2005, 6, 244.	2.6	32
81	The structure of reflexive regular splicing languages via Schützenberger constants. Theoretical Computer Science, 2005, 334, 71-98.	0.9	22
82	Regular splicing languages and subclasses. Theoretical Computer Science, 2005, 340, 349-363.	0.9	16
83	Reconciling a gene tree to a species tree under the duplication cost model. Theoretical Computer Science, 2005, 347, 36-53.	0.9	71
84	Correlation Clustering and Consensus Clustering. Lecture Notes in Computer Science, 2005, , 226-235.	1.3	14
85	Recombinant DNA ,Gene Splicing as Generative Devices of Formal Languages. Lecture Notes in Computer Science, 2005, , 65-67.	1.3	1
86	Circular splicing and regularity. RAIRO - Theoretical Informatics and Applications, 2004, 38, 189-228.	0.5	12
87	The Haplotyping problem: An overview of computational models and solutions. Journal of Computer Science and Technology, 2003, 18, 675-688.	1.5	104
88	Decision Problems for Linear and Circular Splicing Systems. Lecture Notes in Computer Science, 2003, , 78-92.	1.3	11
89	Regular Languages Generated by Reflexive Finite Splicing Systems. Lecture Notes in Computer Science, 2003, , 134-145.	1.3	6
90	Experimenting an approximation algorithm for the LCS. Discrete Applied Mathematics, 2001, 110, 13-24.	0.9	23

#	Article	IF	CITATIONS
91	Nesting of prime substructures in k-ary relations. Theoretical Computer Science, 2001, 259, 341-357.	0.9	0
92	The complexity of multiple sequence alignment with SP-score that is a metric. Theoretical Computer Science, 2001, 259, 63-79.	0.9	91
93	Separating some splicing models. Information Processing Letters, 2001, 79, 255-259.	0.6	25
94	An approximation algorithm for the shortest common supersequence problem. , 2001, , .		22
95	DNA and circular splicing?. Lecture Notes in Computer Science, 2001, , 117-129.	1.3	10
96	APPROXIMATING THE MAXIMUM ISOMORPHIC AGREEMENT SUBTREE IS HARD. International Journal of Foundations of Computer Science, 2000, 11 , $579-590$.	1.1	4
97	Primitive 2-structures with the (n â^' 2)-property. Theoretical Computer Science, 1994, 132, 151-178.	0.9	9
98	Circular Languages Generated by Complete Splicing Systems and Pure Unitary Languages. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 9, 22-31.	0.8	1
99	Automata and Formal Languages for Next Generation Sequencing Data. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 252, 1-2.	0.8	O