
## Manuel Llano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10956873/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Schlafen 11 Restricts Flavivirus Replication. Journal of Virology, 2019, 93, .                                                                                                                         | 1.5 | 34        |
| 2  | A new family of fullerene derivatives: fullerene-curcumin conjugates for biological and photovoltaic applications. RSC Advances, 2018, 8, 41692-41698.                                                 | 1.7 | 23        |
| 3  | Defining Pharmacological Targets by Analysis of Virus–Host Protein Interactions. Advances in Protein<br>Chemistry and Structural Biology, 2018, 111, 223-242.                                          | 1.0 | 3         |
| 4  | LEDGF/p75 Deficiency Increases Deletions at the HIV-1 cDNA Ends. Viruses, 2017, 9, 259.                                                                                                                | 1.5 | 2         |
| 5  | Modulation of chromatin structure by the FACT histone chaperone complex regulates HIV-1 integration. Retrovirology, 2017, 14, 39.                                                                      | 0.9 | 30        |
| 6  | Fullerene Derivatives Strongly Inhibit HIV-1 Replication by Affecting Virus Maturation without<br>Impairing Protease Activity. Antimicrobial Agents and Chemotherapy, 2016, 60, 5731-5741.             | 1.4 | 64        |
| 7  | The Structure-Specific Recognition Protein 1 Associates with Lens Epithelium-Derived Growth Factor Proteins and Modulates HIV-1 Replication. Journal of Molecular Biology, 2016, 428, 2814-2831.       | 2.0 | 12        |
| 8  | Oncogenic Human Papillomaviruses Activate the Tumor-Associated Lens Epithelial-Derived Growth<br>Factor (LEDGF) Gene. PLoS Pathogens, 2014, 10, e1003957.                                              | 2.1 | 32        |
| 9  | Poly(ADP-Ribose) Polymerase 1 Promotes Transcriptional Repression of Integrated Retroviruses.<br>Journal of Virology, 2013, 87, 2496-2507.                                                             | 1.5 | 32        |
| 10 | HIV-1 integrase modulates the interaction of the HIV-1 cellular cofactor LEDGF/p75 with chromatin.<br>Retrovirology, 2011, 8, 27.                                                                      | 0.9 | 6         |
| 11 | Implication of Serine Residues 271, 273, and 275 in the Human Immunodeficiency Virus Type 1 Cofactor<br>Activity of Lens Epithelium-Derived Growth Factor/p75. Journal of Virology, 2010, 84, 740-752. | 1.5 | 21        |
| 12 | SUMOylation of the Lens Epithelium-Derived Growth Factor/p75 Attenuates Its Transcriptional Activity on the Heat Shock Protein 27 Promoter. Journal of Molecular Biology, 2010, 399, 221-239.          | 2.0 | 25        |
| 13 | LEDGF/p75 Proteins with Alternative Chromatin Tethers Are Functional HIV-1 Cofactors. PLoS<br>Pathogens, 2009, 5, e1000522.                                                                            | 2.1 | 67        |
| 14 | Intensive RNAi with lentiviral vectors in mammalian cells. Methods, 2009, 47, 298-303.                                                                                                                 | 1.9 | 19        |
| 15 | Rapid, Controlled and Intensive Lentiviral Vector-Based RNAi. Methods in Molecular Biology, 2009, 485, 257-270.                                                                                        | 0.4 | 11        |
| 16 | Virological and Cellular Roles of the Transcriptional Coactivator LEDGF/p75. Current Topics in Microbiology and Immunology, 2009, 339, 125-146.                                                        | 0.7 | 29        |
| 17 | Role of PSIP1/LEDGF/p75 in Lentiviral Infectivity and Integration Targeting. PLoS ONE, 2007, 2, e1340.                                                                                                 | 1.1 | 209       |
| 18 | An Essential Role for LEDGF/p75 in HIV Integration. Science, 2006, 314, 461-464.                                                                                                                       | 6.0 | 470       |

MANUEL LLANO

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Identification and Characterization of the Chromatin-binding Domains of the HIV-1 Integrase<br>Interactor LEDGF/p75. Journal of Molecular Biology, 2006, 360, 760-773.                                                                 | 2.0  | 169       |
| 20 | A role for LEDGF/p75 in targeting HIV DNA integration. Nature Medicine, 2005, 11, 1287-1289.                                                                                                                                           | 15.2 | 583       |
| 21 | Identification of the LEDGF/p75 HIV-1 integrase-interaction domain and NLS reveals NLS-independent chromatin tethering. Journal of Cell Science, 2005, 118, 1733-1743.                                                                 | 1.2  | 157       |
| 22 | LEDGF/p75 Determines Cellular Trafficking of Diverse Lentiviral but Not Murine Oncoretroviral<br>Integrase Proteins and Is a Component of Functional Lentiviral Preintegration Complexes. Journal of<br>Virology, 2004, 78, 9524-9537. | 1.5  | 275       |
| 23 | Lens Epithelium-derived Growth Factor/p75 Prevents Proteasomal Degradation of HIV-1 Integrase.<br>Journal of Biological Chemistry, 2004, 279, 55570-55577.                                                                             | 1.6  | 142       |
| 24 | Signalling via CD70, a member of the TNF family, regulates T cell functions. Journal of Leukocyte Biology, 2004, 76, 263-270.                                                                                                          | 1.5  | 29        |
| 25 | Codon optimization of the HIV-1 vpu and vif genes stabilizes their mRNA and allows for highly efficient<br>Rev-independent expression. Virology, 2004, 319, 163-175.                                                                   | 1.1  | 149       |
| 26 | Differential effects of US2, US6 and US11 human cytomegalovirus proteins on HLA class Ia and HLA-E<br>expression: impact on target susceptibility to NK cell subsets. European Journal of Immunology, 2003,<br>33, 2744-2754.          | 1.6  | 62        |
| 27 | Blockade of Human Immunodeficiency Virus Type 1 Expression by Caveolin-1. Journal of Virology, 2002, 76, 9152-9164.                                                                                                                    | 1.5  | 25        |
| 28 | Human T cell receptor-mediated recognition of HLA-E. European Journal of Immunology, 2002, 32, 936-944.                                                                                                                                | 1.6  | 97        |
| 29 | Human T cell receptor-mediated recognition of HLA-E. European Journal of Immunology, 2002, 32, 936-944.                                                                                                                                | 1.6  | 3         |
| 30 | Human cytomegalovirus and natural killer-mediated surveillance of HLA class I expression: a paradigm of host-pathogen adaptation. Immunological Reviews, 2001, 181, 193-202.                                                           | 2.8  | 45        |
| 31 | Mitogen-activated protein kinase activity is involved in effector functions triggered by the<br>CD94/NKG2-C NK receptor specific for HLA-E. European Journal of Immunology, 2000, 30, 2842-2848.                                       | 1.6  | 16        |
| 32 | The Tyrosine Kinase Pyk-2/Raftk Regulates Natural Killer (Nk) Cell Cytotoxic Response, and Is<br>Translocated and Activated upon Specific Target Cell Recognition and Killing. Journal of Cell Biology,<br>2000, 149, 1249-1262.       | 2.3  | 78        |
| 33 | NK cell recognition of non-classical HLA class I molecules. Seminars in Immunology, 2000, 12, 109-119.                                                                                                                                 | 2.7  | 146       |
| 34 | Paired inhibitory and triggering NK cell receptors for HLA class I molecules. Human Immunology, 2000, 61, 7-17.                                                                                                                        | 1.2  | 94        |
| 35 | How do NK cells sense the expression of HLA-G class Ib molecules?. Seminars in Cancer Biology, 1999, 9, 19-26.                                                                                                                         | 4.3  | 39        |
| 36 | NK cell mediated recognition of HLA class Ib molecules: role of CD94/NKG2 receptors. Journal of Reproductive Immunology, 1999, 43, 167-173.                                                                                            | 0.8  | 8         |

Manuel Llano

| #  | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The ILT2(LIR1) and CD94/NKG2A NK cell receptors respectively recognize HLA-G1 and HLA-E molecules co-expressed on target cells. European Journal of Immunology, 1999, 29, 277-283.                                                                                                           | 1.6 | 325       |
| 38 | The ILT2(LIR1) and CD94/NKG2A NK cell receptors respectively recognize HLA-G1 and HLA-E molecules co-expressed on target cells. , 1999, 29, 277.                                                                                                                                             |     | 1         |
| 39 | Specific engagement of the CD94/NKG2-A killer inhibitory receptor by the HLA-E class Ib molecule induces SHP-1 phosphatase recruitment to tyrosine-phosphorylated NKG2-A: evidence for receptor function in heterologous transfectants. European Journal of Immunology, 1998, 28, 1280-1291. | 1.6 | 110       |
| 40 | HLA-E-bound peptides influence recognition by inhibitory and triggering CD94/NKG2 receptors:<br>preferential response to an HLA-G-derived nonamer. European Journal of Immunology, 1998, 28,<br>2854-2863.                                                                                   | 1.6 | 348       |
| 41 | Specific engagement of the CD94/NKG2-A killer inhibitory receptor by the HLA-E class Ib molecule<br>induces SHP-1 phosphatase recruitment to tyrosine-phosphorylated NKG2-A: evidence for receptor<br>function in heterologous transfectants. , 1998, 28, 1280.                              |     | 1         |
| 42 | A Common Inhibitory Receptor for Major Histocompatibility Complex Class I Molecules on Human<br>Lymphoid and Myelomonocytic Cells. Journal of Experimental Medicine, 1997, 186, 1809-1818.                                                                                                   | 4.2 | 847       |
| 43 | Structure and function of the CD94 C-type lectin receptor complex involved in recognition of HLA class I molecules. Immunological Reviews, 1997, 155, 165-174.                                                                                                                               | 2.8 | 130       |
| 44 | The CD94/NKG2 C-type lectin receptor complex. Immunologic Research, 1997, 16, 175-185.                                                                                                                                                                                                       | 1.3 | 14        |